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Abstract

Development of innovative thermodynamic cycles is important for the efficient utiliza-

tion of low-temperature heat sources such as solar, geothermal, and waste heat sources.

Binary mixtures exhibit variable boiling temperatures during the boiling process, which

leads to a good thermal match between the heating fluid and working fluid for efficient

heat source utilization. This study presents a theoretical and an experimental analysis of a

combined power/cooling cycle, which combines the Rankine and absorption refrigeration

cycles, uses ammonia-water mixture as the working fluid and produces power and refrig-

eration, while power is the primary goal. This cycle, also known as the Goswami Cycle,

can be used as a bottoming cycle using waste heat from a conventional power cycle or as

an independent cycle using low to mid-temperature sources such as geothermal and solar

energy. A thermodynamic analysis of power and cooling cogeneration was presented.

The performance of the cycle for a range of boiler pressures, ammonia concentrations,

and isentropic turbine efficiencies were studied to find out the sensitivities of net work,

amount of cooling and effective efficiencies. The thermodynamic analysis covered a broad

range of boiler temperatures, from 85 °C to 350 °C. The first law efficiencies of 25-31%

are achievable with the boiler temperatures of 250-350 °C. The cycle can operate at an

effective exergy efficiency of 60-68% with the boiler temperature range of 200-350 °C. An

experimental study was conducted to verify the predicted trends and to test the performance

xvi
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of a scroll type expander. The experimental results of vapor production were verified by

the expected trends to some degree, due to heat transfer losses in the separator vessel. The

scroll expander isentropic efficiency was between 30-50%, the expander performed better

when the vapor was superheated. The small scale of the experimental cycle affected the

testing conditions and cycle outputs. This cycle can be designed and scaled from a kilowatt

to megawatt systems. Utilization of low temperature sources and heat recovery is definitely

an active step in improving the overall energy conversion efficiency and decreasing the

capital cost of energy per unit.

xvii
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Chapter 1

Introduction

Fossil fuels like coal, oil, and natural gas are the main energy resources in modern day

and they are considered non-renewable energy sources because they take millions of years

to form and cannot be renewed after use. Renewable energy technologies are those that

harness energy from an inexhaustible source such as the sun, wind, falling water, waves,

tides, biomass, or heat generated beneath the surface of the Earth. All of the renewable

energy resources are derived from the sun except the geothermal energy. Solar energy

comes directly from the thermal energy released by the sun; however, sources like wind,

hydropower, waves and tides are the indirect result of solar energy. The other alternative

source is nuclear power that does not emit CO2 but is nonrenewable.

Current world primary energy consumption and the forecasted demand for limited fossil

fuels, nuclear and renewable resources are presented in Fig. 1.1 [1]. Of the world’s energy

demand in 2008, the fossil fuels accounted for about 81.2% with oil, coal and natural gas

making up 33.1%, 27.0%, and 21.1% of that total, respectively. Renewable energy sources

make up only 13.0% of the total world energy use. Statistics from the Internation Energy

Agency (IEA) show that the world energy consumption is projected to increase by 37%

from 2008 to 2035 as shown in Fig. 1.1 [1]. According to their forecast, renewables,

1
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Figure 1.1 Current and projections of the world primary energy demand by fuel type. Data
is adapted from [1]

natural gas and coal account for the largest increments in fuel consumption for energy use

over the projected period.

Sustained high prices for oil and natural gas make coal-fired generation more attrac-

tive economically, especially for coal-rich nations like China, India, and the United States,

however coal is also the most carbon intensive energy source. Carbon dioxide is the largest

human-caused greenhouse gas in the atmosphere [2]. Atmospheric concentrations of car-

bon dioxide have been rising at a rate of about 0.6% annually in recent years, and that

growth rate is likely to increase. As a result, by the middle of the 21st century, carbon diox-

ide concentrations in the atmosphere could be doubled since the industrialization started

in 1900s. Despite these facts, global energy demand continues to be supplied from non-

renewable sources over the long term as seen by projections in Fig. 1.1.

2
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Figure 1.2 U.S. electric power sector energy consumption, electricity generation, and con-
version efficiency. Data is adapted from [3]

U.S. electric power sector energy consumption, electricity generation, and conversion

efficiency are shown in Fig. 1.2. Electrical system energy losses are calculated as the

difference between the total primary consumption by the electric power sector and the

total energy content of electricity retail sales. Most of these losses occur at steam-electric

power plants (conventional and nuclear) in the conversion of heat energy into mechanical

energy to turn electric generators. In addition to conversion losses, other losses include

power plant use of electricity (~5%), transmission and distribution (~7%) of electricity

from power plants to end-use consumers, which is also called line losses [2]. Overall,

about two thirds of total energy input is lost in conversion. As it is shown in the figure, the

average conversion efficiency of thermal heat to electricity is increased approximately 2%

since 1990. The average electricity conversion was close to 32% in 2009.

3
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To reduce the transmission and distribution losses, the generation should be done by

more locally, rather than in a centralized power plant where the electricity is transmitted

thousands of miles to the consumers. The motivation for this work comes from the pos-

sible recovery of energy losses shown in Fig. 1.2, this would increase the overall energy

conversion efficiency, and decrease the dependency on the limited fossil fuels.

1.1 Motivation

Utilization of low temperature sources and heat recovery is an active step in improving

the overall energy conversion efficiency and decreasing the capital cost of energy per unit.

The ammonia-water combined power/cooling cycle proposed by Goswami [4, 5] utilizes

a binary ammonia-water working fluid to produce both power and refrigeration. The cy-

cle, also known as the Goswami Cycle, is a combination of an ammonia-based Rankine

cycle and an ammonia-water absorption refrigeration cycle. This cycle can be designed

and scaled from a kilowatt to megawatt systems, and can be used as a bottoming cycle

using waste heat from a conventional power cycle or as an independent cycle using solar

or geothermal energy. The heat source temperature can be varied from a low temperature

source such as 60 °C to mid temperature sources such as 350 °C. The cycle can be opti-

mized for power, cooling, or efficiency, whichever is the priority for the designer. The use

of Goswami cycle is one candidate of the distributed technologies that could connect to the

power grid.

The distinguishing feature of this cycle is the method in which cooling is produced. In

conventional Rankine power cycle the working fluid is regenerated by pure condensation,

however in this cycle absorption condensation is used to regenerate the working fluid. This
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allows the expander exhaust temperature to be significantly below the ambient temperature.

In the power/cooling cycle, it is possible to expand the vapor to sub-ambient temperatures,

which can be used for cooling since the vapor is condensed by absorption in a liquid. A

detailed literature survey on the combined power/cooling cycle, and a detailed analysis of

the Goswami cycle will be presented in Chapter 2.

Martin and Goswami [6,7] performed experiments on the cycle at the Solar Energy and

Energy Conversion Laboratory of the University of Florida, and found that the expander

is one of the critical components. The aim of the experiments was to demonstrate that

power and cooling could be obtained simultaneously. The potential of cooling output from

the cycle was verified by the temperature difference between the absorber and expander

exit, however the minimum cooling temperatures obtained in the experiments were higher

than expected. They explained the reason as the low conversion efficiency of the expander,

which they estimated to be between 20% and 35%. After the experiments [7–9] were done

at the Solar Energy and Energy Conversion Laboratory of University of Florida, some of

the cycle components were moved to Clean Energy Research Center of the University of

South Florida.

Scroll compressors have been widely adopted by the HVAC industry because of the

advantages they offer, including: simple design, low friction, low torque pulsation, and

compliance. Literature suggests the potential use of a scroll compressor as a high effi-

ciency expander [10, 11]. Therefore, in this work, scroll expander was chosen as a suitable

expander candidate. Based on the experiments and recommendations of the previous re-
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searchers, experimental cycle was re-assembled with major modifications. The modifica-

tions regarding the experimental setup will be discussed in Chapter 4.

1.2 Research Objectives

The overall objective of this research is to assemble the Goswami cycle with the mod-

ified components as well as detailed analysis of the cycle with simulations and study the

performance based on experiments and simulations. Theoretical studies are aimed to inves-

tigate the cooling and power output sensitivity of the combined cycle to a range of boiler

pressures, strong solution concentrations and different boiler exit configurations. Analyt-

ical and experimental study will determine the strong and weak points of the cycle. The

experimental study is very important since very limited experimental study of the cycle

was accomplished before this research. The following are the detailed objectives of this

research work:

1. Conduct a literature review of the state-of-art power and cooling cycles.

2. Develop a thermodynamic model to analyze the Goswami cycle for a set of heat

source temperatures.

3. Conduct a literature review of the expanders used in low-temperature cycles.

4. Assemble the cycle on a moveable strut-channel frame, and upgrade or renew the

components such as pumps, absorber heat exchanger and piping.

5. Assemble boiler and condenser units for the cycle, to simulate the experiments in the

lab environment.
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6. Modify and test the expander in experiments and compare with the theoretical cycle

analysis.
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Chapter 2

Background and Summary of Previous Work

Development of innovative thermodynamic cycles is important for efficient utilization

of renewable energy sources such as solar, geothermal, and waste heat sources. Thermal

power cycles can be classified on the basis of the working fluid used, as vapor power cycles

and gas power cycles. In a vapor power cycle, the gas that spins the turbine is obtained

from vaporizing a liquid. An example of such a cycle is the classic Rankine cycle. In a gas

power cycle, such as the Brayton cycle, the working fluid is in a gaseous state throughout

the cycle.

Selection of the appropriate thermodynamic cycles and the working fluids depends

strongly on the temperature of the heat source. In this research, we are focusing on the

low and mid temperature sources such as solar energy, geothermal or waste heat in the

temperature range of 60-350 °C. The Goswami cycle is applicable within this range. In

this chapter, we will review important thermodynamical cycles in this temperature range.

Finally, this chapter will review the literature and the previous work on the Goswami cycle.

2.1 Solar Thermal Power

Solar thermal electric power plants generate electricity by converting concentrated solar

energy to heat, which is then converted to electricity as in a conventional thermal power

plant. The three major concepts used today are line-focus systems (parabolic trough and
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Figure 2.1 Concentrating solar resource of the U.S. Map is taken from [12]

continuous linear Fresnel reflector (CLFR)), point-focus central receiver (power towers),

and point-focus distributed receiver (dish-engine systems). Each of these technologies can

be hybridized with fossil fuels. This hybrid operation has the potential to increase the

value of concentrated solar power (CSP) technology by increasing its power availability

and decreasing its cost by making more effective use of the power block.

2.1.1 Parabolic Trough Systems

Parabolic trough systems are usually oriented in a north-south direction and the col-

lectors track the sun from east to west focusing solar energy on a long tubular receiver, as

shown in Fig. 2.2. They are able to concentrate the solar radiation flux 30 to 80 times,

heating the thermal fluid up to about 400 °C-450 °C. A synthetic heat transfer oil or molten

salt is usually used as a the heat transfer fluid. This heat transfer fluid is pumped from the

solar field to a power block, where the fluid’s heat is converted to high-pressure steam in
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Figure 2.2 LS2 trough fields at Kramer Junction power plant in the Mojave desert. Photo
is taken from [16]

a series of heat exchangers. This steam is directed to a conventional steam turbine, which

converts the thermal heat into electricity. A schematic drawing of solar thermal power cy-

cle is shown in Fig. 2.3. Steam Rankine cycle is usually used in parabolic trough based

solar thermal power [13–15].

2.1.2 Continuous Linear Fresnel Reflector (CLFR) Systems

Fresnel mirror systems use long flat mirrors at different angles to concentrate sunlight

on to a tube containing heat-collecting fluid as shown in Fig. 2.4. They differ from troughs

in that the mirrors are located near the ground and rotate individually while focusing on

a fixed receiver tube. CLFR companies suggest that their systems are less costly than
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Figure 2.3 Schematic description of the solar thermal power cycle

parabolic troughs and will result in lower energy costs. However, there are no operating

CLFR based power plants to allow a comparison of costs.
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Figure 2.4 Solar power group’s fresnel mirror test rig at the plataforma solar de Almeria in
Spain. Photo is taken from [17]

2.1.3 Dish/Engine Systems

Solar Dish/Engine systems are small modular units with autonomous generation of

electricity by engines, such as Stirling engines located at the focal point. The parabolic

dish reflector concentrates the solar radiation on a small area. The dish structure must track

the sun continuously to reflect the beam into the thermal receiver. The thermal receiver is

the interface between the dish and the engine/generator. It absorbs the concentrated beam

of solar energy, converts it to heat, and transfers the heat to the engine/generator. A thermal

receiver can be a bank of tubes with a heat transfer fluid, usually air, hydrogen or helium,

which is also the working fluid for the engine. Alternate thermal receivers are heat pipes

wherein the boiling and condensation of an intermediate fluid is used to transfer the heat to

the engine. Due to aerodynamical constraints like wind forces which deform the surface of
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the concentrator, the maximum size is limited to a few 100 m2 and its electric power output

to about 10-50 kW. Two different dish concentrators are shown in Fig. 2.5.

(a) Science App. Int. Corp., Golden,
CO, U.S.

(b) Boeing Co., Daggett, CA, U.S.

Figure 2.5 Dish/engine systems. Photos are taken from [16].

2.1.4 Power Tower Systems

Power tower systems consist of a field of large, nearly-flat mirror assemblies (heliostats)

that track the sun and focus the sunlight onto a receiver at the top of a tower. The system

uses hundreds to thousands of sun-tracking heliostats to reflect the incident sunlight onto

the receiver (Fig. 2.6). In a typical configuration, a heat-transfer fluid such as water/steam,

atmospheric or pressurized air or molten nitrate salt mixture is pumped through the receiver,

and used to generate steam to power a conventional steam-turbine power cycle generating

electricity. Large receiver systems with thousands of heliostats, each with 100 m2 mirror

area, would require towers up to 100-200 m high. They could collect several hundred MW
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of solar radiation power. An advantage of power tower systems over linear concentrator

systems is that higher temperatures can be achieved in the working fluid, leading to higher

efficiencies and lower-cost electricity. Power towers can achieve very high operating tem-

peratures of over 1000 °C, enabling them to produce hot air for gas turbine operation. Gas

turbines can be used in combined cycles, yielding very high conversion efficiencies of the

thermal cycle of more than 50%.

(a) Solar Two, California, U.S.

(b) PS 10, Sanlúcar la Mayor, Spain

Figure 2.6 Power tower systems in operation. Photos are taken from [16]
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2.2 Geothermal Energy

Geothermal energy is used in several ways, heating applications for residential or com-

mercial buildings and generating electricity. The advantage of geothermal energy com-

pared to solar thermal and wind energy is that it is available around the clock, which makes

it especially attractive for base-load power plants. Today, most of the large geothermal

power plants in the world use hot water from volcanically active regions to generate elec-

tric power. However, the occurrence of geothermal heat sources is not limited to regions

with noticeable volcanism. In principle, there is geothermal heat everywhere, but it must

be drilled down to depths of four to five kilometers (~ 3000-5000 m) in order to tap a

level of temperatures, which is high enough to effectively generate electric power using

steam turbines. The challenge lies in the establishment of technologies that improve the

yield of geothermal repositories and reduce the risks associated with their exploration and

exploitation.

Geothermal power plants fall into one of three categories: direct steam, flash, and binary

plants. Dry steam power plants systems were the first type of geothermal power generation

plants built. In the dry steam power plants, the steam is piped directly from underground

wells to the power plant, where it is directed into a turbine. Flash steam plants are used at

sites that produce high-temperature waters (between 175 °C and 300 °C). In these designs,

water is pumped under high pressure to the generation equipment at the surface. When the

fluid reaches the surface, where pressures are lower, the fluid "flashes" to steam, which is

sent to turbine. Binary cycle plants differ from dry steam and flash steam systems in that

the water or steam from the geothermal reservoir never comes in contact with the turbine;
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these systems convert lower temperature geothermal water (90°–175°C) to electricity by

first routing the fluid through a closed-loop heat exchanger, where it heats a hydrocarbon

working fluid. A typical example of this type of energy source is the 60 MW power plant at

the Krafla volcano in Iceland. Iceland provides 60% of electricity demand from geothermal

systems. The plant gets hot hydrothermal brine at initially 400 °C from 2200 m depth. The

water expands and cools on rising up the well shaft and finally is input to the power plant

as steam at 170 °C.

The geothermal resource potential map for the U.S. shows locations of identified hy-

drothermal sites and favorability of deep enhanced geothermal systems (EGS) in Fig. 2.7.

In the United States, most geothermal reservoirs are located in the western states, Alaska,

and Hawaii.

Figure 2.7 Geothermal resource of the U.S. Map is taken from [12]
Note: The map does not include shallow EGS resources located near hydrothermal sites or U.S. Geological
Survey (USGS) assessment of undiscovered hydrothermal resources
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The most recent data by N.R.E.L. shows that 3086.6 MW of geothermal electric gen-

erating capacity is on-line in 9 states as shown in the Fig. 2.8. With the current projects

both under development and in confirmation phases, it is expected to increase by 5256.2

MW to 7877.2 MW, which will make the total in the range of 8342.8 MW to 10963.8 MW.

Geothermal resources are not only used for power generation but also used for agricultural

heating, industrial, and bathing applications.

Figure 2.8 Geothermal power generation in the U.S. Map is taken from [12]

Franco and Villani [18] explored the possible use of binary cycles with dry cooling

systems for the geothermal applications. Their study revealed that first law and exergy

efficiencies of 6-12% and 22-45% are achievable for the binary cycles. For this study,

the geothermal fluid, rejection, and condensation temperatures were 110–160°C, 70-80 °C

and 30-40 °C, respectively. Their parametric study for a geothermal heat source of 160

°C compared the performance of supercritical and dual pressure Rankine cycles. The dual
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pressure Rankine cycle using isobutene have a higher first law and exergy efficiency than

supercritical Rankine cycle using R152a.

In Germany, there are several examples of hydrothermal sources where the temperature

of the water is between 60 °C to 120 °C, it is not suitable for effective power generation by

ORC or Kalina cycle, therefore it is used for space heating. Recent studies by Demirkaya et

al. [19] and Vasquez et al. [20] showed that Goswami cycle can produce power and cooling

using such low temperatures. They showed that an effective first law efficiency of 3.5–5.5%

and an effective exergy efficiency of 22–33% with 50–75% turbine efficiency could be

achieved for a boiler temperature of 83.4 °C [19]. When the heat source temperature is 130

°C with a 50% efficient turbine, the effective first law and exergy efficiencies were 10%

and 42%, respectively [20]. There are many hotel resorts that provide hot spring water

for the customers, so with low temperature source, Goswami cycle can be used for power

generation and cooling for HVAC applications in the hotels. Some examples of geothermal

power plants with the type of cycle, geothermal fluid temperature, and working fluid are

given in Table 2.2.

Table 2.1 Geothermal power plants examples
Location Cycle Tfluid °C Working Fluid
Chena Hot Spring, AK, U.S. [21] Rankine 80 R134a
Husavik, Iceland [22] Kalina 124 Ammonia-Water
Simav, Turkey [23] Rankine 145 R124
Otake, Japan [18] Rankine 130 Isobutane
Amedee, U.S. [24] Rankine 104 R-114
Wabuska, U.S. [24] Rankine 104 Iso-pentane and R-114
Covefort, U.S. [24] Rankine 138 Steam
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2.3 Waste Heat

Waste heat sources can be low-grade (<100°C), medium grade (100°C–400°C) or high

grade (>400°C) [25]. Low-grade waste heat can be found in all areas of industry and

buildings however, it is the hardest to recover cost-effectively. Typical examples of recov-

ering low-grade waste heat would be ventilation, hot water systems, low temperature solar

flat panels, solar ponds etc. Mid-grade waste heat is most widely found in the chemicals,

food and drink, oil refineries, and other process industries, as well as building utilities. It

has been estimated that a typical petroleum refinery in the U.S. rejects about 256 MW of

thermal energy to the environment through warm gases at temperatures of 150 °C to 300

°C [26]. Inoue et al. [27] found that utilizing 5% efficient cycles, 1200 MW of power can

be generated with waste heat through exhaust gas at temperatures below 200 °C and hot

water above 80 °C from the industrial plants in Japan. In general, high-grade waste heat is

mainly limited to the iron and steel, glass, nonferrous metals, bricks, ceramics and cement

industries [28]. In cement production, recoverable heat is available in clinker coolers hot

air and preheater gases.

2.4 Power Cycles

2.4.1 Rankine Cycle

The most commonly used vapor power cycle is the Rankine cycle, that provides approx-

imately 85% of worldwide electricity production [29]. A simple Rankine cycle, shown in

Fig. 2.9 consists of four steps [30]. The working fluid is pumped to a high pressure and

circulated through the boiler. The fluid is boiled at a constant pressure in the boiler af-
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ter which the high-pressure vapor produced is expanded through a turbine, thus extracting

work from it. The vapor exiting the turbine is condensed in a condenser by rejecting heat

to a cooling fluid. Water is used as the working fluid for most of the vapor power cycles as

it works over a broad range of temperatures and pressures, has a large heat capacity, and is

stable, safe, and very environmentally friendly.

Boiler

G

Heat
Source

Generator

Condenser

Turbine

Cooling 
Fluid

Figure 2.9 Schematic description of the Rankine cycle

There are several modifications to the Rankine cycle that are used to achieve better effi-

ciencies: lowering the condenser temperature which decreases the low temperature average

limit, superheating the steam to higher temperatures, or boiler pressure which increases the

average high temperature [30]. In a real Rankine cycle, the compression and expansion

processes are irreversible. In particular, the efficiency of the steam turbine will be limited

by water droplet formation. As the water condenses, water droplets hit the turbine blades at

high speed causing pitting and erosion, gradually decreasing the life of turbine blades and
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efficiency of the turbine. The easiest way to overcome this problem is by superheating the

steam.

2.4.2 Organic Rankine Cycle

Since the first Rankine cycle-based thermal power plant was built, there have been sev-

eral improvements in the configuration, components, and materials used, but the working

fluid of choice has usually been water. While water has several properties that make it a

very good choice as a working fluid, better choices are available in low temperature appli-

cations. Organic working fluids are a popular choice for such applications. The Organic

Rankine cycle (ORC) is named for its use of an organic, high molecular mass fluid with

a liquid-vapor phase change, occurring at a lower temperature than the water-steam phase

change. The fluid allows Rankine cycle heat recovery from lower temperature sources such

as biomass combustion, industrial waste heat, geothermal heat, solar ponds etc.

The low-temperature heat is converted into useful work that can itself be converted into

electricity. They are most often used when exploiting low temperature thermal resources for

power generation, or small-scale applications (typically <5 MW). Typical working fluids

that are used in ORC plants are, Toluene, Xylene, n-pentane, n-butane, R-11, R-22, and R-

248fa. Despite the fact that these fluids have lower heats of vaporization than water, which

requires larger flow rates, smaller turbine sizes are obtained due to the higher density at

the turbine exit conditions. The size and complexity advantage of organic fluid turbines

is driven by higher fluid density at typical turbine operating conditions as well as much

smaller expansion pressure ratios (inlet/outlet). Simplified turbine design is then another
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advantage associated with high condensing pressures. Several existing ORC applications

are producing 3 to 6.5 MW of electricity [31].

2.4.3 Supercritical Rankine Cycle

The use of mixtures is one way to obtain good thermal matching with sensible heat

sources. Other methods that have been proposed include multi-pressure boiling and super-

critical operation. Multi pressure boiling has not been very popular in the industry because

of the costs involved. The other option is to use supercritical cycles [30]. A schematic

drawing of a supercritical Rankine cycle is illustrated in Fig 2.10. The main advantage of

the supercritical process is the fact that the average high temperature in which the heat in-

put is taking place is higher than in the case of the subcritical fluid process. Therefore, the

Carnot efficiency is higher. The boiling process does not pass through a distinct two-phase

region, and a better thermal match is obtained in the boiler. There are several works that

studied the performance of the supercritical cycles using solar energy, the power generation

efficiency estimated was 25%, and the heat recovery efficiency was 65% [32]. Supercritical

cycles have to operate at a higher pressure, since the boiler pressure has to exceed the crit-

ical pressure of the working fluid. High operating pressure increases the equipment costs,

although it improves the performance of the cycle.

Most of the previous studies on supercritical Rankine cycle used pure fluids. Recently,

Chen et al. [33] performed a comparative study between an ORC and the supercritical

Rankine cycle by using zeotropic mixtures as the working fluids. Their study showed that

supercritical cycle could achieve thermal efficiencies of 10.8 to 13.4% with the cycle high

temperature of 120 to 200 °C as compared to 9.7 to 10.1% for the organic Rankine cycle
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Figure 2.10 Schematic description of the Supercritical cycle

[33]. They claim a significant improvement of 10 to 30% over the organic Rankine cycle.

Their study also showed that the heating and condensation processes efficiency was 38.6%

for the supercritical Rankine cycle as compared to 24.1% for the organic Rankine cycle

[33], as this would help in the cost reduction of condensing and boiling heat exchangers.

2.4.4 Ammonia-Water Cycles

Thermodynamic cycles using binary mixtures as a working fluid offer interesting char-

acteristics and a high potential for generating electricity from a low-temperature heat source

[4, 34, 35]. It is been shown that optimum power produced by the Lorentz cycle can be

higher than the optimum power produced by the Carnot cycle at the same working condi-

tions [36, 37].

Binary mixtures such as ammonia-water mixture can be used to provide an approx-

imation to the ideal Lorentz cycle by varying both pressure and mass fraction to match
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the ideal triangular shape in a temperature-entropy diagram. The temperature difference

between the heat source and the working fluid remains small to allow for a good thermal

match between the source and working fluid, such that less irreversibility results during

the heat addition process. The first study of power cycle using a binary mixture as the

working fluid was performed by Maloney and Robertson [38] who concluded no signifi-

cant advantage to the configuration over steam cycle operation at the conditions considered.

However, Kalina [34] reintroduced the idea of an ammonia-water power cycle as a supe-

rior bottoming cycle option over steam Rankine cycle, which showed an increase in the

overall efficiency of 14.5% to 23% above the efficiency of the combined systems using the

Rankine bottoming system at the same border conditions.

2.4.5 Kalina Cycle

The Kalina cycle utilizes an ammonia-water mixture as a working fluid to improve sys-

tem efficiency and provide more flexibility in various operating conditions [22, 34, 39–43].

A simplified arrangement for the Kalina cycle is shown in Fig. 2.11. Besides using a binary

fluid, the cycle includes the ability to use different compositions of the working fluid in dif-

ferent parts of the cycle. The distinguishing feature of the Kalina cycle is its distillation

condensation subsystem (DCSS). Much of the Kalina cycle’s improvement is the direct re-

sult of the DCSS. The DCSS consists of nine heat exchangers; seven are recuperative and

two are condensers that reject the waste heat to cooling water [41]. The DCSS changes the

composition of the working fluid and condenses it in two steps at two different pressures.

The high pressure condenser pressure corresponds to the pressure of condensation of the

70% ammonia-water mixture while the low pressure condenser pressure corresponds to
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that of the 40% working fluid. The turbine back pressure is determined by the low pres-

sure condenser, so the ability to reduce the low pressure condenser below that of the high

pressure condenser leads directly to an over-expansion in the turbine and the Kalina cycle’s

improvement over the Rankine cycle.
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Figure 2.11 Schematic description of the Kalina cycle

The first Kalina cycles were designed for using the hot exhaust gas from diesel en-

gines and gas turbines as heat sources, the so-called bottoming cycle application, [34].

Kalina [34] investigated the Kalina cycle performance for a boiler temperature of 532 °C,

and found that the bottoming cycle produces 2.7 MWe with a first law and exergy efficien-
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cies of 32.9% and 70.0%, respectively. Kalina and Leibowitz [22] presented a different

configuration of the Kalina cycle for geothermal applications. In that study, it was shown

that the Kalina cycle has a higher power output for a specified geothermal heat source

compared with organic Rankine cycles using isobutene and steam flash cycles. Kalina

and Leibowitz [39] showed improved performance of the Kalina cycle (KCS6D2) over the

Rankine steam cycle during off-design and partial load operations. They showed that the

plant’s mass flow might be kept at or near design levels, which keeps turbine efficiency

high, during partial load operation. In an another study by Kalina et al. [40] they com-

pared the performance of the Kalina cycle, which was designed to produce 86 MW, with

the two-pressure steam bottoming cycle; Kalina cycle provided an additional 12.1 MW,

16.4% of the total capacity at a boiler temperature and pressure of 497.6 °C and 160.1

bar, respectively. The first and second law efficiencies of the Kalina cycle were 35.6% and

78%, respectively. They also compared the economics of the Kalina cycle with the steam

Rankine cycle, $1,058/kW and $1,033/kW, respectively. Kalina cycle power plants can

use steam turbines with a smaller size and therefore less expensive than in Rankine cycle

plants of the same output. Condensers are usually works under gauge pressure. As ammo-

nia vapor has a smaller specific volume compared to steam, a smaller exhausting area is

needed for the turbine last stage, which creates the difference in cost. In addition, the use

of the ammonia-water mixtures does not require any special design materials; carbon steel

is quite acceptable for low temperature application.

In 1992 [44], a Kalina demonstration plant started operation at the U.S. Department

of Energy’s Energy Technology Engineering Center in California. During the initial 540
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hours of trial period, the Distillation condensation subsystem performed as designed [41].

The average low and high pressure of the condenser during the initial experiments were

20 and 110 psig, respectively. In 1996, a gas turbine replaced the waste heat stream as the

Kalina cycle heat source. As a combined cycle, the plant generated 4.6-5.7 MWe, 1.6 to 2.6

MWe was from the bottoming Kalina cycle, and operated for a total of 1,500 hours. The

maximum pressure and temperature of the Kalina cycle were 114 bars and 516 °C [42].

During this period, there were several problems encountered such as low performances

of the vapor turbine and condenser components. The most serious problem encountered

was the failure of the turbine’s high pressure interstage seals. Pure nickel was originally

selected because of its nitriding resistance and tolerance to rubbing; however, nickel in

pure form does not have sheer strength at high temperature. The seals were replaced with

a nickel/chrome alloy. The rotor, which was nickel-based alloy, was observed to be in

excellent condition, and showed no evidence of nitriding, oxidation corrosion, erosion or

foreign object damage. Another problem during the experiments was the dissolving of

solids, which were in the form of iron. The ammonia working fluid was able to dissolve

some scale on the walls of the heat exchangers and piping. Overall plant performance

confirmed the theoretical basis of the technology; the plant’s output was 10% short of the

design condition. This was due to the turbine’s mechanical problems.

After this demo-plant, the first commercial Kalina cycle was built in Husavik, Iceland.

The plant design and economics, compared with an organic Rankine cycles, were described

by Leibowitz and Micak [43]. The system was designated as Kalina cycle system 34 (KCS

34). The plant was designed to produce 2 MW net of power using brine at a mass flowrate
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of 90 kg/s and temperature of 124 °C. The ammonia-water cycle decreases the tempera-

ture of the geothermal brine stream from 124 °C to 80 °C and the remaining energy in the

stream is used for district heating purposes. For the same heat source temperature, they

stated that KCS 34 provides 25% greater work outputs than the ORC [43]. KCS 34 con-

tains two additional heat exchangers (the two recuperators) and a separator (flash tank) that

are not found in the ORC. They predicted that the cost of this additional equipment, in-

cluding piping, valves, and installation, was approximately $75/kW for the Husavik plant.

However, they stated that the costs of a steam turbine for KCS 34 and the primary heat

exchangers (evaporator and condenser) were expected to be less than the costs of those in

ORC by more than the $75/kW.

The cost of the turbine for the KCS 34 would be cheaper than the ORC as steam turbines

have been manufactured for over a century and are available from numerous suppliers. In

addition, hydrocarbons have lower enthalpy than ammonia-water, thus the ORC turbine

requires more volume and mass flow to provide the same output [45]. This results in larger

casing and blading sizes for the ORC. The ORC brine evaporator and condenser are also

more expensive because they have much lower heat transfer coefficients, and require larger

shell sizes to accommodate the higher mass and volume flow rates, compared to ammonia-

water systems [45]. Leibowitz and Micak [43] stated that the economic cost predictions of

KCS 34 had advantage over a hydrocarbon based ORC.

The Husavik plant began generation operations in July 2000, which produces more

than 1.6 MW. Maack and Valdimarsson [46] summarized the two years of experience in

the Husavik plant. The main problems in the startup and operation were pump seal fail-
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ure, undersized condenser, turbine axial seal failure, and carry-over from the separator,

which caused erosion in the turbine. Start-up problems, component failure and equipment

malfunction had been overcome and the plant was running according to specifications.

Global Geothermal Ltd. [28] company owns and controls the Kalina cycle rights as-

sociated with the proprietary technology since 2007. Recently, another project is going

on in Germany, Unterhaching power plant, which is designed to produce 3.4 MW of elec-

tricity [28]. The application of Kalina cycle is explored in cement plants to utilize waste

heat sources to generate electricity [47, 48]. Based on this research, it is announced that

Kalina cycle power plant will generate 8.6 MW of power from the waste heat stream of the

Khairpur cement plant [28]. The project will be the largest Kalina cycle power plant in the

world, and it is expected to reduce the CO2 emissions of the cement plant by up to 31,000

tons per year [49].

Independent studies have been performed that concede some advantage of the Kalina

cycle under certain conditions. Park and Sonntag [50] compared the Kalina cycle and the

Rankine cycle at the same thermal boundary conditions, and they showed that the Kalina

cycle bottoming systems have higher efficiencies of 5% of first law and 15% of second law

than the Rankine cycle. The temperature difference between the heat source and the work-

ing fluid remains small to allow for a good thermal match between the source and working

fluid, such that less irreversibility results during the heat addition process. In a study by

Olsson et al. [51], the Kalina cycle with a gas turbine topping cycle was investigated for a

district heating system. Olsson et al. [51] found the first law and exergy efficiencies of the

cycle as 23% and 69.7%, respectively. The turbine inlet pressure and temperatures were
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110 bar and 494 °C. Their results showed that the Kalina cycle power output was between

4 and 7% higher than that the ammonia-water mixture Rankine cycle for the same amount

of heat supplied to the district heating system. They concluded that the advantages of the

Kalina cycle were greater when the district heating temperatures were lower. Bisio [52]

investigated Kalina cycles for power generation from waste heat in iron- and steel-works,

and showed an exergy efficiency of 9.1% higher than the Rankine cycle. Olsson et al. [53]

explored the waste heat (300-400 °C) recovery from the iron and steel industries by the

Kalina cycle. They compared the Kalina cycle with a steam cycle, and showed that the

Kalina cycle performs better especially when the minimum outlet temperature of the heat

source is low; Kalina cycle produced 9% to 32% more work than the Rankine cycle.

Ibrahim [35] provided a detailed evaluation of the Kalina and Maloney and Robertson

absorption power cycles and compared their performances with the maximum power cycle.

Their results showed that at a very high (~20) thermal-capacitance-rate ratio (ratio of the

heating fluid to cooling fluid mass flow rate and specific heat product), the Kalina cycle

produces about 80% of the maximum power and the Maloney and Robertson cycle about

70% of the maximum power.

Bjorge et al. [54] presented the performance characteristics of the Kalina combined cy-

cle system with a MS900lFA type gas turbine. They compared the three-pressure reheat

Steam Rankine cycle with Kalina cycle (KC109FA), and found that Kalina cycle can in-

crease combined cycle system output by 4 to 5% and efficiency by 2 to 2.5%. Nag and

Gupta [55] examined the exergy analysis of the Kalina cycle, they varied the temperature

of ammonia-water mixture at the condenser, and they found that the cycle efficiency varies
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between 30-36% for a boiler temperature of 500 °C. The second law efficiency for the same

operating conditions is in the range of 51-60%.

Hettiarachchi et al. [56] examined the performance of the Kalina cycle system 11

(KCS11) for low-temperature geothermal heat sources. They compared the results of the

Kalina cycle with ORC. Kalina cycle performed 1-3% higher first law efficiency when the

evaporator pressure was higher than 20 bar. Lolos and Rogdakis [57] recently analyzed the

use of Kalina cycle at low temperature such as 130 °C. The main heat source of the cycle

is provided from flat solar collectors. The cycle operates at low pressure levels (0.2-4.5

bar) and low maximum temperature (130 °C). They found that the cycle has a maximum

first law efficiency of 8.3% at a system high pressure of 4.6 bar, boiler temperature of 130

°C, and condenser temperature of 20°C. The first law efficiency drops from 7.4% to 5.6%

when the condensation temperature increases from 25 °C to 35 °C. Recently, another nu-

merical study was conducted by Ogriseck [58], the study showed that the net efficiency of

an integrated Kalina plant was between 12.3% and 15% for a heat source of 120 °C, and

condensing fluid temperature of 20 °C.

2.4.6 Other Ammonia-Water Mixture Cycles

The non-regenerative single-pressure Rankine cycle is the simplest steam cycle, which

can be used as bottoming cycle with a topping gas turbine. Desideri et al. [59] investigated

the performance of a non-regenerative single-pressure Rankine cycle using an ammonia-

water mixture. The ammonia mass fraction in the working fluid varied from 0 to 1. Their

results showed the ammonia concentration in the mixture is in the range of 0.10-0.16 for the

maximum work output from the bottoming cycle. They stated that the effect of ammonia
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concentration on power output is largely inf1uenced by the exergy losses in the condenser;

condenser losses were minimal when the concentration was between 0.10 and 0.16.

Rogdakis and Antonopoulos [60] offered a new cycle, which uses an absorption con-

densation instead of the complex DCSS of Kalina cycle. Their proposed cycle uses an

absorption process similar to that employed in absorption refrigeration systems. The cycle

had three turbine stages with two reheaters. The boiler temperature was 400 °C. The cy-

cle was compared with Rankine cycle and it was shown that the thermal efficiency of the

proposed ammonia-water and Rankine cycles were 30-36% and 10-30%, respectively.

Roy et al. [61] analyzed the two ammonia-water Rankine cycles for fixed source and

sink inlet temperatures; one with and one without a regenerator, both using a mixture as

the working fluid. The regenerator recovers heat from the turbine exhaust and increases

the temperature of the working fluid that goes to the boiler. The first law efficiency with

regenerator and without regenerator was 11.39% and 11.01%, respectively.

2.4.7 Combined Power and Cooling Cycles

Combined power and refrigeration cycles have been explored for improving the overall

energy conversion efficiency and decreasing the cost of energy per unit capital expense.

There is now a small class of combined power and cooling cycles since it was proposed by

Goswami [4].

In several studies, waste heat is recovered from the top gas turbine or engine based

cycles and it is utilized to generate refrigeration. These are not shown in Table 2.2 as the

focus of this study is on the heat recovery of thermodynamic cycles where the working

fluid exhibits phase change during the cycle loop.
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Erickson et al. [26] proposed an ammonia-water absorption cycle, which produces

power and refrigeration interchangeably and utilizes heat in the range of 120 °C to 300 °C.

The dual-function cycle consists of a heat-recovery unit, desorber, recuperator, absorber,

turbine plus electric generator, condenser and evaporator. The power and the refrigeration

cycle use the same absorption cycle equipment that improves the economics of recovering

low-level waste heat. Their simulation results showed that the thermal efficiencies of the

system are 11.9%, 18.9%, and 26.6%, when the heat source temperatures are 175 °C, 230

°C, and 290 °C, respectively. Erickson et al. [26] emphasized the advantage of a power

cycle, which uses absorption cycle for the condensation process; the liquid is not totally

evaporated, only partly desorbed, and a residual amount of absorbent liquid is recirculated

to the lower pressure for absorption. Thus, the absorption cycle does not require a prob-

lematic total-evaporation step as the Kalina cycle.

Agnew et al. [62] explored the theoretical performance of a combined turbocharged

Diesel engine and absorption refrigeration systems. The exhaust gas temperature was

around 500-800 °C, which is too high for the scope of this study, however they showed

the combined system efficiency improves the thermal efficiency from 33-40% to 47-52%.

Talbi and Agnew [63] examined the interfacing of a diesel engine with an absorption refrig-

eration unit. They studied four different configurations when operating in a high ambient

day temperature of 35 °C. Their study showed that the combined efficiency of the com-

bustion engine and the cooling system could be as high as 58-61%. Thermal power in the

exhaust gas ranged from 45 to 53 kW and the cooling output from the absorption refrigera-

tion system was in the range of 30-35 kW. Liu et al. [64] highlighted the practical utilization
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of an adsorption chiller, which makes possible the recovery of low-grade thermal energy.

Their experimental study showed that the COP and cooling capacity of silica/gel–water ad-

sorption chiller reaches over 0.5 and 9 kW, respectively, with a heat source of 80 °C. There

is another study where Maidment and Tozer [65] developed an economical and mathemat-

ical model to predict the energy performance of the combined power and cooling system

based on an internal combustion engine and absorption chiller. Their model showed that

the optimum cycle should include a Li-Br absorption chiller because of the low cost of the

Li-Br absorption chiller, and this system offers a payback period under 7 years.

Colonna and Gabrielli [66] worked on a combined system where a gas turbine or gas

internal combustion engine drives an ammonia-water absorption refrigeration cycle through

a heat recovery exchanger. In contrast to the cycle configuration proposed by Erickson

et al. [26], Colonna and Gabrielli [66] system drives the power and refrigeration cycles

independently. They showed that with a waste heat source temperature of 120 °C, a COP

value of 0.57-0.59 could be reached. The system was a trigeneration system, which was

driven by a 10 MW capacity of gas turbine, and utilizing the waste heat from the gas

turbine can produce approximately 6.4 MW of refrigeration and 11.2 MW of thermal heat.

Alexis [67] proposed a combined system which is similar to Colonna and Gabrielli’s [66]

system, except that a steam ejector refrigeration cycle replaces the ammonia absorption

system to produce refrigeration. This cycle utilizes extraction steam from the steam turbine,

for the conventional Rankine cycle, to heat up the working fluid in an independent steam

ejector refrigeration cycle.
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Oliveira et al. [68] presented a hybrid solar/gas system that is based on the combination

of an ejector heat pump cycle with a Rankine cycle. This cycle provides cooling/heating

and electricity generation for buildings. To test the system reliability two prototype units

of cooling capacities up to 5 kW and electrical output up to 1.5 kW, were built. For a

boiler temperature of 95 °C and a turbine efficiency of 28%, average coefficient of perfor-

mance (COP) of the cooling cycle was around 30% and electricity production efficiency

was between 3% and 4%.

The ejector refrigeration systems integration with the Rankine cycle was first proposed

by Nord et al. [69]. Their proposed system was the combination of vapor compression and

Rankine cycles with the compression device being a jet-pump instead of a conventional

compressor. Jet-pump, is also called as ejector, is one of the simplest flow induction device.

The jet-pump acts as the joining device between the thermal and power parts of the system,

by mixing the high pressure flow from the power cycle with the low pressure flow from

the refrigeration part of the system providing a pressure increase in the refrigeration cycle.

Nord et al. [69] used R134-a as the working fluid in their analysis. Zheng and Weng [70]

showed another configuration of a Rankine and ejector refrigeration cycle in which an

organic fluid, R245fa, is used as the working fluid. The ejector is driven by the exhausts

from the turbine to produce power and refrigeration simultaneously. The principle of this

combined ORC and ejector system is as follows; saturated liquid is pumped to the operating

pressure of the ORC vapor generator, then the working fluid is vaporized at the boiler. The

saturated or superheated vapor leaves the vapor generator and expands in the turbine, and

the vapor from the turbine exit enters the ejector nozzle as the primary fluid. The very
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high velocity vapor at the exit of the nozzle produces a high vacuum at the inlet of the

mixing chamber and entrains secondary vapor into the chamber from the evaporator. The

primary and secondary fluids are mixed in the mixing chamber of the ejector at a constant

pressure. As refrigeration cycle is driven by the nozzle, no compressor is needed for this

refrigeration system. Then the mixed fluid recovers the pressure in the diffuser of the

ejector and the vapor leaves the ejector and enters the condenser. The working fluid is

condensed by rejecting heat to the cooling water and the saturated liquid condensate is

separated into two streams; one stream returns to the pump and the pressure increased to

the vapor generator, and the other goes to the refrigeration cycle, which is throttled to the

evaporating pressure by an expansion valve. Then the working fluid from the expansion

valve enters the evaporator to produce refrigeration. They used R245fa as the working

fluid, and ideal turbine and pumps are assumed for their simulations of the ORC ejector

refrigeration cycle.

Zheng and Weng [70] compared their results with the theoretical study of Hasan et

al. [71]. They showed that the work output of the cycle is less than the Goswami cycle;

however, their proposed cycle refrigeration output is significantly higher than the Goswami

cycle. The refrigeration output is higher due to the phase change of the working fluid dur-

ing the refrigeration process. The turbine exit pressure is higher so that the vapor can be

used to drive a refrigeration ejector cycle. On the other hand, the potential of producing

work is sacrificed to produce more refrigeration. Their exergy analysis showed that the

main exergy loss occurs at the ejector due to the friction and mixing between the primary

and secondary fluids and the normal shock in the constant-area section; almost 30% of the
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total exergy input in the vapor generator is lost. Wang et al. [72] proposed a trigeneration

system of organic Rankine and ejector refrigeration cycle, which produces cooling , heat-

ing output and power simultaneously. The difference between the Zheng and Weng [70]

and the Wang et al. [72] study is that the turbine exhaust is divided into two streams in

the latter, the first stream enters the supersonic nozzle of the ejector system, and the other

stream enters the heater system, which provides the heat output of the combined cycle. As

the system is driven by a solar system, they investigated the effect of solar parameters such

as hour angle and the slope angle of the aperture plane for the solar collectors on the system

performance. In another study, the same research group investigated the performance of the

cycle without the heating system; they showed the performance of the cycle for combined

power and cooling output [73]. As the results are shown in Table 2.4.7, the thermal effi-

ciency difference between the trigeneration system and combined system is approximately

0.7%. Recent studies [74–76] also presented analysis of an ejector-absorption refrigeration

cycle for cogeneration of power and cooling. Dai et al. [75] performed an optimization

of the cycle by using the exergy efficiency. Their results showed that the combined cycle

was operating at a maximum exergy efficiency of 27.1% when the turbine inlet pressure

and temperature and the turbine back pressure were 7.9 bar, 118.9 °C and 1.5 bar, respec-

tively. Their exergy analysis results showed that the amounts of exergy loss in the boiler

and ejector accounted large percentage.

Zheng et al. [77] proposed a combined power and cooling cycle based on the Kalina

cycle. The flash tank in Kalina cycle was replaced by a rectifier, which could obtain a higher

concentration ammonia–water vapor for refrigeration. To produce almost pure ammonia,
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a rectifier was used to replace the flash tank in the Kalina cycle. The outflow from the

top of the rectifier is throttled by a valve and then the working fluid produces refrigeration

before mixing with the main stream. In terms of equipment, this cycle requires additional

condenser and evaporator between the rectifier and the second absorber.

Liu and Zhang [78] proposed another combined system that integrates a splitting /ab-

sorption unit with a Rankine cycle and absorption refrigeration cycle. In this configuration,

the ammonia-water basic solution is separated into a high concentration ammonia vapor

and a relatively weak solution liquid in a device similar in operation to a distillation col-

umn. The vapor is condensed and throttled to produce cooling while the weak solution

liquid is vaporized and superheated, then expanded in a turbine for power production. The

streams are then cooled and rejoined in an absorber.

Zhang and Lior [79] studied an ammonia-water system, which operated in a parallel

combined cycle mode with an ammonia-water Rankine cycle and an ammonia refrigera-

tion cycle. The ammonia-water outflow from the absorber is pumped to the rectification

pressure, and it is preheated by the external heat source to its saturation temperature before

being fed to the rectifier. The basic concentration solution is separated into a high con-

centration vapor and low concentration solution in the rectifier. The vapor is sent to the

condenser and the low concentration solution is sent to the boiler. The weak solution from

the boiler is brought into the power cycle by being pumped to the system high pressure and

then evaporated and superheated by the heat source gas to the highest power cycle temper-

ature. It then expands in the turbine to generate power, then the vapor enters the condenser

and the exit liquid solution is pumped to the absorption pressure and sent back to the ab-
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sorber. The high concentration vapor from the rectifier is condensed first, and then the high

concentration saturated liquid is subcooled by preheating the evaporator return vapor. The

subcooled liquid is then throttled to the refrigeration pressure, it provides refrigeration dur-

ing its evaporation process in the evaporator, and finally it combines in the absorber with

stream from the power cycle. The two streams mix there to form the basic concentration so-

lution, which is cooled to its saturated state, and this completes the whole cycle. Zhang and

Lior [79] investigated the effects of the key thermodynamic parameters on both energy and

exergy efficiencies. The superheater temperature of the power cycle of this combined cycle

is 450 °C; therefore, this cycle requires a gas turbine at the top with a exhaust temperature

higher than 450 °C. Zhang and Lior [80] also summarized some guidelines for integration

of refrigeration and power systems to produce higher energy and exergy efficiencies.

Zamfirescu and Dincer [81] proposed a trilateral Rankine flash cycle, which uses am-

monia–water mixture as a working fluid. They assessed the performance of an ammo-

nia–water Rankine cycle with no boiler; the saturated liquid is flashed by a volumetric

expander (e.g., reciprocating, centrifugal, screw or scroll type expander) for power gen-

eration. The saturated liquid is flashed into two phase, the resulted vapor-liquid mixture

is then fully condensed and the liquid is pumped to high pressures and heated up to the

saturation temperature. Wagar et al. [82] expanded the analysis for the concentration range

of 0-0.5, and maximum turbine inlet temperature of 350 °C. The cycle thermal efficiency

was found between 5% and 35%.

Badami and Portoraro [83] proposed a trigeneration system that is composed of gas

fired internal combustion engine and liquid LiCl–water desiccant cooling system. The
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cooling system recovers heat from the flue gases and from the internal combustion engine

cooling water. The system produces power and heating during the winter season, and power

and cooling during the summer. The unit produces 126 kW of electricity in the winter and

220 kW of thermal heat with 29.5% electricity and 51.5% thermal efficiencies. During the

summer, the combined system produces 110.2 kWe and 210 kWc of electricity and cooling,

respectively. Their economic analysis showed that the payback period of the trigeneration

system was 6.8 to 7.6 years.

Zhai et al. [84] presented a hybrid solar heating, cooling and power generation system

based on helical screw expander and silica gel–water adsorption chiller. The hybrid solar

system is able to produce 23.5 kW electric power and 79.8 kW cooling with solar radi-

ation of 600 W/m2 and collector area of 600 m2. They proposed helical screw expander

in their analysis as it could work with low vapor quality and steady internal efficiency.

The shortcoming of this expander is that it has a higher outlet temperature and pressure,

which results in serious outlet thermal loss and lower thermal efficiency. However, this pro-

vides high temperature latent thermal energy of exhaust steam that can be recovered and

supply the refrigeration system as heat input. The high-pressure working medium pushes

against the vanes of a screw-type expander, converting some of its heat energy into mechan-

ical power, turning the shaft of a generator and producing a net power output. The waste

heat recovery system mainly consists of two heat exchangers, a hot water tank, and silica

gel–water adsorption chillers (in summer) and radiation heating system (in winter). The

relatively high temperature exhaust steam from the helical screw expander is separated in

steam separator, and dry steam flows into the first heat exchanger. Zhai et al. [84] showed
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the exergy analysis of the overall system, and found that the second law efficiency is 9.9%

during the summer. They found that both the main energy and exergy losses take place at

the parabolic trough collector, and amount to 36.2% and 70.4%, respectively.

In another study, a vapor-compression refrigeration cycle is driven by an organic Rank-

ine cycle (ORC), and they are coupled by a device called an expander–compressor unit [85].

This device is a free-piston, and the compressor and expander are integrated in the same

unit. The work produced in the expander is transferred to the refrigeration cycle by the

piston; the output from the combined system is only refrigeration. The organic Rankine

and the vapor-compression refrigeration cycles also share the same condenser and working

fluid. R22 and R134a were used as the working fluids. The generator, condenser and evap-

orator temperatures were between 60-95 °C, 30-50 °C, and -10 to 10 °C, respectively. The

COP was found to be 0.1-0.6. The system with R22 provided better COP than the system

with R134a for all ranges of operating temperatures.

Takezawa et al. [86] proposed a cogeneration system by a series connection of solid

oxide fuel cell (SOFC), gas turbine, and Li-Br absorption chiller to convert the exhaust

heat to cooling. The exhaust gas temperature of the combined cycle is high, about 280

°C, and they investigated using this exhaust gas to generate cold by an absorption chiller.

Their results showed that the combined system with 500-kW-class SOFC, the bottoming

absorption chiller can produce a refrigerating capacity of about 120-30 kW depending on

the absorption chiller type. In another recent study, Al-Sulaiman et al. [87] investigated a

trigeneration system, which consists of a solid oxide fuel cell, an ORC, a heating process,

and a single-effect absorption chiller. The waste heat from the SOFC was used as input heat
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to the ORC and the waste heat from the ORC was used for heating and cooling system.

The waste heat from the SOFC was used as input heat the ORC, and consecutively, the

waste heat from the ORC was used for producing steam in the heating process using a heat

exchanger and cooling using a single-effect absorption chiller. Their study showed that

there was 3-25% gain in exergy efficiency when a trigeneration system was used compared

with only the power system. Their exergy analysis also showed that the most significant

sources of exergy destruction rates were the ORC evaporator and air heat exchanger at the

SOFC inlet.

Recently, there are studies that used waste heat-powered refrigeration systems. Vene-

gas et al. [88] presented a theoretical study that compared different working pairs for the

absorption refrigeration systems, which was driven by 50-90 °C heat source. Their study

showed that for evaporation temperatures ranging between -40 and 0 °C, the double- and

triple-stage refrigeration cycles reached a higher COP using a Li-NO3-NH3 solution than

using an H2O-NH3 pair. The results obtained for the double-stage cycle show that in the re-

frigeration cycle the Li-NO3-NH3 solution operates with a COP of 0.32, the H2O-NH3 pair

with a COP of 0.29 and the Na-SCN-NH3 solution with a COP of 0.27, when it evaporates

at -15 °C, condenses and absorbs refrigerant at 40 °C and generates vapor at 90 °C.

Suzuki et al. [89] proposed an ammonia-water mixture turbine system (W-MTS) which

is the combination of two different Kalina cycle types, KCS-1 and KCS-34. KCS-1 has a

distillation/condensation subsystem and it is effective for heat source temperatures of 200-

400 °C. KCS-34 is a Kalina system specifically designed for geothermal systems, which

is suitable for heat source temperatures of 100-200 °C. Suzuki et al. [89] compared the
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power output of this cycle with the KCS-1 and KCS-34 cycles, and they showed that the

W-MTS generates more power rather than two Kalina cycles. The exergy efficiency of the

W-MTS is 38% when the ammonia mass fraction is 0.6 kg NH3/kg solution and the heat

source temperature is 160 °C. The exergy efficiencies of the KCS-1 and the KCS-34 for the

same operating conditions are 33% and 30%, respectively. Amano et al. [90] conducted

experiments with the W-MTS by using a 40% efficiency axial impulse type turbine, the

heat source temperature was between 165-180 °C. Their experimental study showed that

the power output decreased from 45.0 kW to 10.0 kW when the evaporating pressure was

increased. They also concluded that the flow rate of the AWM basic composition must

be controlled when the heat source was changed, especially during partial load operation.

Another conclusion they reached was that the evaporating pressure should be as low as

possible to create high enthalpy in the turbine inlet vapor. Amano et al. [91] combined the

W-MTS with an absorption refrigeration system and proposed a hybrid power generating

and refrigerating cycle. The refrigeration cycle is a single-stage ammonia absorption refrig-

eration cycle. They coupled the power and refrigeration cycle by connecting the separator

of the power cycle to the absorber of the refrigeration cycle, and they feed the power cycle

by the strong solution stream of the refrigeration cycle. However, the same heat source both

feed the power and refrigeration cycles separately. They compared the hybrid configuration

with the stand alone power and refrigeration systems used, and their results showed that the

hybrid configuration produce higher power output and COP than those of the stand-alone

power and refrigeration systems.
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Takeshita et al. [92–94] extended the W-MTS experimental cycle by including a gas

turbine at the top and a Rankine cycle at the middle cycles. The topping cycle, is a typical

Brayton Cycle with a gas turbine, which spins at 30,000 rpm at 700 kW, and a synchronous

generator. The second stage, the middle cycle, is a Rankine Cycle with a backpressure

steam turbine, which spins at 3000 rpm at 55 kW, and an induction generator. The bottom

stage was the combined W-MTS and absorption refrigeration cycle described in Amano et

al. [91]; power generating system consist of an AWM turbine, which spins 3000 rpm at

60 kW, and an induction generator, and the refrigeration system consist of an ammonia-

absorption refrigerator and ice storage tanks, which had a capacity of 3000 MJ. They ini-

tially investigated the effect of ammonia mass fraction on the turbine performance [92].

Their experiments showed that pressure ratio between inlet and outlet of the turbine and

turbine shaft power decreases with the basic composition. Their results indicate that the

bottoming power and refrigeration cycle contribution to the overall cycle efficiency was

significant, which was about 7% in electric power [94]. However, the system is not simple;

it includes evaporator, two pre-heaters, two separators, high and low pressure condensers,

and a recuperator. They found that the Rankine cycle required 60 kg/h of steam per unit

kW power output, however the AWM cycle required only 28 kg/h, which was 46% that of

a Rankine Cycle system. The temperature of the heat source steam was varied between 139

and 162 °C, and they found that the AWM turbine system was not able to produce power

when the heat source temperature was 139 °C [93]. Thermal efficiency of the system also

reduced by decreasing the heat source temperature. The maximum efficiency of the cycle

was 1.7% and 2.5%, respectively for heat source temperatures of 148 °C and 162 °C [93].
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They stated that with the improved turbine efficiency, the AWM system should theoreti-

cally produce power at a thermal and exergy efficiency of 6% and 16%, respectively with a

heat source steam temperature of 139 °C. However, this cycle is not suitable for heat source

temperatures below 100 °C.

Wang et al. [95] developed a combined cycle that was consist of an ORC and vapor

compression cycles. Essentially, an organic Rankine cycle is coupled to a vapor compres-

sion cycle to produce the cooling. The cooling side is a standard vapor compression cycle.

Instead of using an electrical motor to drive the compressor, the compressor was directly

coupled to the expander. A nominal 5 kW cooling capacity prototype system was devel-

oped based on this concept and tested under laboratory conditions. Although the system

was tested off of its design point, it performed well achieving 4.4 kW of cooling at a mea-

sured heat activated COP of 0.48.

Most of these cycles showed some prospect in terms of thermal and exergy efficiency,

however these systems are relatively complicated compared to the Goswami cycle [4], re-

sulting in a higher capital investment. The cogeneration of power and refrigeration systems

are summarized in Table 2.2 with thermal and exergy efficiencies. Other parameters such

as heat source, turbine conditions etc. are also given in Table 2.3.
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Table 2.2 Combined power/cooling and ammonia-water cycles from the literature
Reference Cycle Type Working Fluid Efficiency %

Thermal Exergy
Erickson et al. [26] GAX cycle+Absorption Ref Theoretical Ammonia-water 11.9 N.A.
Oliveira et al. [68] Rankine+Ejector Ref. Experimental n-pentane 4.0% NA
Alexis [67] Rankine+Ejector Ref. Theoretical Water 32.0 N.A.
Wang et al. [74] Rankine+Ejector Ref. Theoretical Ammonia-water 20.9 35.8
Dai et al. [75] Rankine+Ejector Ref. Theoretical R123 13.7 22.2
Wang et al. [76] Rankine+Ejector Ref. Theoretical Ammonia–water 20.5 35.5
Zheng and Weng [70] ORC+Ejector Ref. Theoretical R245fa 34.1 56.8
Wang et al. [72] ORC+Ejector Ref. Theoretical R123 15.6 39.8
Wang et al. [73] ORC+Ejector Ref. Theoretical R123 14.9 27.5
Zheng et al. [77] Kalina+Absorption Ref. Theoretical Ammonia-water 24.2 37.3
Amano et al. [90] Kalina+Absorption Ref. Experimental Ammonia-water N.A. N.A.
Amano et al. [91] Kalina+Absorption Ref. Theoretical Ammonia-water N.A. N.A.
Takeshita et al. [94] Kalina+Absorption Ref. Experimental Ammonia-water 26 NA
Liu and Zhang [78] Rankine+Absorption Ref. Theoretical Ammonia-water 27.8 57.6
Zhang and Lior [79] Rankine+Absorption Ref. Theoretical Ammonia-water 27.7 55.7%
Zhai et al. [84] Rankine+Absorption Ref. Theoretical Steam/Silica gel–water 27.3 9.9
Zamfirescu and Dincer [81] Trilateral flash Rankine Theoretical Ammonia-water 8 30
Wagar et al. [82] Trilateral flash Rankine Theoretical Ammonia-water 16 N.A.
Aphornratana and Sriveerakul [85] ORC+Vapor Compression Ref. Theoretical R134a and R22 N.A. N.A.
Wang et al. [95] ORC+Vapor Compression Ref. Theoretical R-245fa 12 22
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Table 2.3 Operating conditions of the combined power/cooling cycles found in the literature
Reference Temperature °C Turbine Parameters

Heat Source Boiler/Condenser Efficiency % P (bar) T (°C)
Erickson et al. [26] 175 155/28 75 25.1/5.2 155/61.7
Oliveira et al. [68] N.A. 95/N.A. 28 N.A. N.A.
Alexis [67] N.A. 360.0/60.1 85 20/0.2 360.0/241.6
Wang et. al [74] 300 212/25 85 25/1.19 285/96.9
Dai et al. [75] 150 140/20 85 8.0/2.0 140/101.7
Wang et al. [76] 300 285/25 85 25/1.19 285/96.9
Zheng and Weng [70] N.A. 122.0/21.9 100.0 19.93/4.0 122.0/67.9
Wang et al. [72] 140 130.0/25 85 10.0/3.0 130.0/94.2
Wang et al. [73] 140 130.0/25 82 7.0/2.2 130.0/99.0
Zheng et al. [77] N.A. 350/35 N.A. 49/0.98 350/84.5
Amano et al. [90] 165-180 N.A./N.A. 40 12.0-17.0/N.A. 164/N.A.
Amano et al. [91] 165 155.0/42.0 100.0 28.0/2.9 155.0/N.A.
Takeshita et al. [94] 163.9 °C 158.9/27 40 15/N.A. 158.9/N.A.
Liu and Zhang [78] 465 450/35 87 111/0.39 450/68
Zhang and Lior [79] 465 450/45.1 87 52.4/0.2 450/61.3
Zhai et al. [84] N.A. 180/82.1 70 10.0/0.7 180/90
Zamfirescu and Dincer [81] 150 °C 130/25 80 6/N.A. 130/50
Wagar et al. [82] 210 200/N.A. 85 N.A. N.A.
Aphornratana and Sriveerakul [85] N.A. 80.0/40.0 N.A. 26.3/10.2 80.0/40.0
Wang et. al [95] N.A. 190/ 75 34/N.A. 190/N.A.
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2.5 Goswami Cycle

The ammonia-water combined power/cooling cycle proposed by Goswami [4, 5] uti-

lizes a binary mixture, such as ammonia-water, working fluid to produce both power and

refrigeration simultaneously in the same loop and require less equipment; simply an ab-

sorber, separator, boiler, heat recovery and refrigeration heat exchangers and a turbine. The

cycle is a combination of Rankine cycle and an absorption refrigeration system. This cycle

can be used as a bottoming cycle using waste heat from a conventional power cycle or as

an independent cycle using low temperature sources such as geothermal and solar energy.

Power is produced by expansion of a high pressure vapor through an expander and cool-

ing comes from the sensible heating of the expander exhaust. Absorption condensation is

used to regenerate the working fluid, this allows the expander exhaust temperature to be

significantly below the temperature at which absorption is taking place. It differs from pure

working fluid Rankine cycle operation, where the limiting expander exhaust temperature is

the vapor condensation temperature. Therefore, in the power/cooling cycle, it is possible

to expand the vapor to sub-ambient temperatures, to produce a low temperature stream that

can be used for cooling. Although, the Goswami cycle is applicable to all binary fluid sys-

tems consisting of two fluids of different boiling temperatures such that one may condense

by absorption in the other, the description below is based on the amonia-water binary fluid

system.

As shown in Fig. 2.12; the cycle’s binary fluid mixture leaves the absorber (state 1)

as a saturated solution at low pressure with a relatively high ammonia concentration. It is

pumped to high pressure (state 2) where it recovers heat from the returning weak ammonia

48



www.manaraa.com

liquid solution in the recovery heat-exchanger, before entering the boiler. As the boiler

operates between the bubble and dew-point temperatures of the mixture at the system pres-

sure, the basic solution is partially boiled to produce a two-phase mixture: a liquid (state

10), which is relatively weak in ammonia; and a vapor (state 4) with a high concentration

of ammonia. This two-phase mixture is separated, and the weak liquid transfers heat to

the high concentration stream before it is throttled to the system low pressure and sprayed

into the absorber. The rectifier cools the saturated ammonia vapor (state 6) to condense out

most of the remaining water. Heat can be added in the superheater as the vapor (state 7)

proceeds to the turbine. The turbine extracts energy from the high-pressure vapor as it is

expanded to the system’s low-pressure (state 8) and cooling comes from the sensible heat-

ing of the turbine exhaust. The vapor (state 9) rejoins the weak liquid in the absorber where

absorption condensation is used to regenerate the working fluid; this allows the turbine ex-

haust temperature to be significantly below the temperature at which absorption is taking

place. This differs from pure working fluid Rankine cycle operation, where the limiting

turbine exhaust temperature is the same as the vapor condensation temperature. Therefore,

in the power/cooling cycle, it is possible to expand the vapor to sub-ambient temperatures,

to produce a low temperature stream that can be used for cooling.

Goswami et al. [4–6, 71, 96–100] proposed the system in the mid-1990s and a num-

ber of studies have been completed since that time. Xu et al. [96] presented a parametric

study of the Goswami cycle under idealized conditions, neglecting the irreversibilities as-

sociated with the heat transfer and expansion processes, and concluded that the cycle can

achieve thermal efficiencies as high as 24% for heat source temperatures around 123 °C.
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Figure 2.12 Schematic description of the Goswami cycle with internal cooling

Hasan and Goswami [97] used the exergy analysis to improve the performance of the com-

bined cycle system. They found out that the highest irreversibility occurs at the absorber

since it involves two highly irreversible processes of condensation and mixing of ammo-

nia and water components. They also found out that total exergy destruction in the cycle
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increases with an increase in the heat source temperature. Although the assumptions of

idealized conditions limit the usefulness of the analysis, those results showed the poten-

tial of the proposed cycle for using low temperature sensible heat sources. Vijayaraghavan

and Goswami [101] presented the efficiency definitions of first law, second law, and ex-

ergy for the power/cooling cycle and performed optimization using these efficiencies. Lu

and Goswami [102] concluded that the cycle could be optimized for work or cooling out-

puts and efficiency. Goswami et al. [103] calculated the second law efficiency of the cycle

for heat source temperatures between 57 °C and 197 °C. They found that the second law

efficiency of the cycle could reach 60% when the boiler temperature is higher than 127

°C. In addition, an initial experimental study was conducted, which generally verified the

expected boiling and absorption processes [98].

Martin and Goswami [100] detailed the experimental facility, factors affecting cooling

production, and experimental measurements of the expander temperature drop. Martin and

Goswami performed experiments to provide a demonstration of the cooling output of the

cycle [6]. They showed the potential of cooling output from the cycle by verifying the

temperature difference between the absorber and expander exit. However, the minimum

cooling temperatures obtained in the experiments were higher than expected, and they ex-

plained that the reason was the poor performance of the expander. Turbine performance

is a crucial factor to utilize the potential of cooling output. The expander used in the ex-

periments was a modified single-stage, partial admission turbine originally for use in an

air-cycle cooling system. The mechanical power generated by the expander was not di-
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rectly measured, also heat transfer across the expander could account for the low efficiency

observed during the experiments.

2.5.1 Cycle Operation

The amount of vapor leaving the separator column also dictates the system high pres-

sure, to give an example, when more vapor is allowed to leave the separator, pressure in

the boiler and separator decreases. The inverse relation between vapor mass flow rate and

system high pressure is illustrated in Fig. 2.13. As shown in the figure, the mass flow rate

fraction of vapor decreases with the increase of boiler pressure. However, a binary mixture

working fluid, at constant temperature and concentration, boils at a pressure between the

saturated liquid and vapor pressures. If the pressure is higher than the saturated liquid pres-

sure, no vapor can be produced, and if the pressure is lower than saturated vapor pressure,

all of the fluid will be vaporized. These limiting pressures are evidenced when net work

output is zero as shown in Fig. 2.13. Work output from the cycle is zero when the pressure

ratio is a unity or no vapor flows to the expander.

Another parameter that is related with the vapor flow rate is the vapor concentration.

As pressure decreases more vapor is formed and its concentration continues to drop until

the saturation pressure is reached and all of the basic solution has vaporized. Vapor con-

centration and mass flow rate fraction relation is presented in Fig. 2.14. The cooling output

from the cycle is very sensitive to vapor concentration; this will be discussed later in this

chapter.
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Figure 2.15 Ammonia-water phase equilibrium diagrams at two different pressures high-
lighting the source of cooling temperatures

2.5.2 Cooling Aspect of the Cycle

The cooling aspect of the Goswami cycle is due to the fact that the working fluid is a

binary mixture and at constant pressure, the condensing temperature of an ammonia rich

vapor can be below the saturation temperature for a lower concentration liquid. The vapor

(state 8), which is shown in Fig. 2.12, rejoins the weak liquid in the absorber where absorp-

tion condensation is used to regenerate the working fluid; this allows the turbine exhaust

temperature to be significantly below the temperature at which absorption is taking place.

This differs from pure working fluid Rankine cycle operation, where the limiting turbine

exhaust temperature is the same as the vapor condensation temperature. Cooling can be ob-

tained by sensibly heating the expander exhaust. This is illustrated with a binary mixture,

phase equilibrium diagram, as shown in Fig. 2.15. The effect of ammonia concentration
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Figure 2.16 Relationship between vapor concentration and amount of partial vaporization
(state 4) at 6 bar

on expander inlet and outlet temperature is also shown in Fig. 2.15. The low concentration

saturated liquid state represents the basic solution exiting from the absorber, while the high

concentration vapor is typical of the expander exhaust conditions. This shows how it is

possible for the vapor to be expanded to a temperature below the ambient.

As illustrated in Fig. 2.15, the basic solution should be kept as low as possible in am-

monia concentration and the vapor should be as high as possible to increase the temperature

gap between the absorber and turbine exhaust temperature. In addition, if the turbine works

very efficiently, it is a high chance that partial condensation of the expander exhaust can

happen, such as 95% expander exhaust quality, and this would cause to reach lower vapor

temperature at the turbine exit. Therefore, in the power/cooling cycle, it is possible to ex-

pand the vapor to sub-ambient temperatures, to produce a low temperature stream that can
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be used for cooling. Figure 2.15 shows that high ammonia mass concentration is needed at

the expander exhaust to reach low temperatures; however, this is coupled with the mech-

anisms of vapor production. Vapor concentration as a function of the ratio of the vapor

mass-flow (state 4) to the basic solution mass-flow (state 3) (Vapor mass flow fraction) is

shown in Fig. 2.16. The working fluid was partially vaporized in the boiler (state 4) and

separated by phase in the separator. As shown in Fig. 2.16, the concentration is highest

with a minimal vaporization. High concentrations are preferred for cooling, since they lead

to low expander exhaust temperatures although this implies low vaporization rates.

As a further example, Fig. 2.17 presents computed results of cycle outputs for the

variation of boiling pressure. The relative position of the maxima for work production, first

law efficiency, and cooling production are shown. Similar to work output, cooling also has
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Figure 2.18 Net work and cooling outputs and effective first law efficiency of the Goswami
cycle with respect to strong solution concentration

a maximum, which is limited at low pressures by higher turbine exhaust temperatures and

bounded at higher pressures by the low production of vapor.

Fig. 2.18 shows that each cycle parameter also has a maximum value for a range of

basic solution ammonia concentration. The ammonia concentration takes an important

role in the maximum values; so any parametric study that is searching for the optimum

conditions and outputs should consider concentration value. Based on the cycle design and

requirements, this figure shows that the cycle can be optimized for each parameter that is

shown.

The main parameters that can be varied to influence the cycle are the heat source tem-

perature, system high pressure, basic solution mass fraction, and absorber pressure and

temperature. Saturation in the absorber reduces the number of independent parameters that
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govern the cycle to four. Rectifier and superheater temperatures can also be modified, as

well as the conditions of heat transfer from the source to the ammonia-water mixture.

58



www.manaraa.com

Chapter 3

Theoretical Modeling of Goswami Cycle

In this chapter, important operating mechanisms affecting the Goswami cycle opera-

tion and the performance of the cycle utilizing low-grade and mid-grade temperature are

presented. Simulations are conducted to study the performance of the cycle for different

parameters such as boiler temperature and pressure, strong solution concentration, absorber

temperature and rectifier exit conditions and to determine the operational limits.

The cycle is shown in Fig. 3.1. The binary fluid mixture leaves the absorber (state 1) as

a saturated solution at the cycle low pressure with a relatively high ammonia concentration.

It is pumped to the system high pressure (state 2) and it recovers heat from the returning

weak ammonia liquid solution in the recovery heat-exchanger before entering the boiler.

As the boiler operates between the bubble and dew-point temperatures of the mixture at

the system pressure, the basic solution is partially boiled to produce a two-phase mixture-a

liquid (state 10), which is relatively weak in ammonia, and a vapor (state 4) with a high

concentration of ammonia. This two-phase mixture is separated in the separator, and the

weak liquid transfers heat to the high concentration stream before it is throttled to the sys-

tem low pressure and sprayed into the absorber. The rectifier cools the saturated ammonia

vapor (state 6) to condense out any remaining water. Heat can be added in the superheater

as the vapor (state 7) proceeds to the expander. The expander extracts energy from the
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high-pressure vapor as it is throttled to the system’s low-pressure (state 8). It provides

cooling in the refrigeration heat exchanger. The vapor (state 9) rejoins the weak liquid in

the absorber where the basic solution is regenerated and heat is rejected.

3.1 Efficiency Terms Used in the Study

In most applications, refrigeration is more expensive product than power since it re-

quires refrigeration equipment as well as power to produce conventional refrigeration.

Therefore, the additional output of refrigeration by the combined cycle provides greater

benefit than the conventional power systems. In order to measure the performance of the

combined cycle in a proper way, the refrigeration produced by the cycle should be taken as

the electric power equivalent to generate the same cooling effect by a conventional refrig-

eration system. The cascade cycle analogy [101] provides the suitable efficiency terms to

measure the performance of the combined cycle. The effective first law efficiency is given

by:

ηI,e f f = (Wnet +Ec/ηII,re f )/Qh (3.1)

In the above equation, Ec term is the exergy associated with the refrigeration. In order

to account for the irreversibilities of heat transfer in the refrigeration heat exchanger, the

exergy change of the chilled fluid was considered.

Ec = ṁc f
[
hc f ,in−hc f ,out−To(sc f ,in− sc f ,out)

]
(3.2)

Effective exergy efficiency is given as:
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Figure 3.1 Schematic description of the Goswami cycle with internal cooling
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ηexergy,e f f =
(
Wnet +Ec/ηII,re f

)
/
(
Ehs,in−Ehs,out

)
(3.3)

In this equation, the denominator is the change in exergy of the heat source, which is

equivalent to the exergy input.

3.2 Simulation Details

Cycle parameters assumed for the parametric study are given in Table 3.1. Commercial

software, Chemcad [104], was used to simulate the combined power and cooling thermo-

dynamic cycle, details of the thermodynamic properties used for the simulation are given

in Appendix A. The following assumptions were used in the analysis:

• Water was used as the chilled fluid in the refrigeration heat exchanger;

• An exhaust turbine temperature of 20°C or lower was required to generate refrigera-
tion;

• Minimum temperature difference for each heat exchanger was 5°C;

• Pressure drops were neglected.

The main parameters that can be varied to influence the cycle are the heat source tem-

perature, system high pressure, basic solution mass fraction, and absorber pressure and

temperature. Saturation in the absorber reduces the number of independent main param-

eters that govern the cycle to four. Rectifier and superheater temperatures can also be

modified, as well as the conditions of heat transfer from the source to the ammonia-water

mixture.
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Table 3.1 Cycle parameters assumed for parametric study
Parameter Value Units
Reference Temperature 25 °C
Reference Pressure 1 bar
Absorber Temperature 31.4 °C
Absorber Pressure 2.08 bar
Boiler Temperature 83.4 °C
Rectifier Temperature 41.7 °C
Ammonia mass fraction, (x) 0.376 kg NH3/kg solution
Second law efficiency of
refrigeration η II,re f [101] 30%

Isentropic turbine efficiency η t 25%, 50%, 75%, 100%
Isentropic pump efficiency η pump 80%

3.3 Rectification Cooling Source

In the experimental setup, external cooling for the rectifier needs is chosen due to sim-

plicity in the installation and flexibility in controlling the rectifier exit temperature. With

the intention of examining the effect of rectification cooling sources on cycle efficiencies,

a parametric study is conducted in this section. The experimental conditions considered by

Martin and Goswami [100] are used for the parametric analysis. In the experimental setup

that Martin and Goswami [100] used, the condensed liquid at the rectifier was directly re-

turned to the absorber without the flow measurement. This caused an uncertainty for the

energy and mass balance across the absorber. In order to tackle this problem, the exper-

imental setup is built as shown in Fig. 3.2. As the experimental operating conditions of

Martin and Goswami [100] are used to show the effect of the parameters being considered,

their configuration is used only in this section.

In addition, Xu et al. [96] provided the maximum potential of the cycle although those

results are not practically achievable. To address this shortcoming, the cooling and power
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Figure 3.2 Schematic description of the Goswami cycle with external cooling

output of the combined cycle are investigated for a turbine efficiency of 50-75% with the

reversible expansion process to show the effects of irreversibilities in the expansion process

on the cycle output parameters. A 25% turbine efficiency is also included in this paramet-

ric study since that was the case in the Martin and Goswami [6] experimental study, which

showed no cooling output. This parametric study that shows the effect of turbine perfor-
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mance is aimed to show the expected improvement of the net work and cooling outputs

using a scroll turbine.

In Case I, rectification cooling is provided by the diverted portion of the basic solution

stream from the absorber as shown in Fig. 3.1, and in Case II, rectification cooling is pro-

vided by an external cooling source as shown in Fig. 3.2. The net work, cooling output,

and effective first law and exergy efficiencies of the cycle are also presented in order to find

out the sensitivity to the boiling pressure, ammonia concentration, and isentropic turbine

efficiency.

The variations of effective first law efficiency and effective exergy efficiency with the

pressure ratio (Pboiler/Pabsorber) and basic solution concentration for the two rectification

cooling sources are shown in Figures 3.3-3.4. There is a significant difference in the effec-

tive first law and exergy efficiencies in favor of an internal cooling source (Case I) when

the turbine efficiency is high (see Figures 3.3(a-b)). As discussed before, the efficiency of

the turbine is crucial to the cycle performance. Although the first law efficiencies around

7% seem low, they compare well with the ideal Lorenz cycle efficiency of 7.6% with finite

heat sources for the same boiler and absorber temperatures for maximum power [37].

The ammonia concentration takes an important role in the maximum values; the sen-

sitivity of ammonia concentration is demonstrated in Figures 3.4(a-b). For this analysis,

boiling pressure was constant at 5.16 bar and the stream exiting from the absorber was kept

under saturated liquid condition at a constant temperature of 31.4 °C. The lowest ammonia

mass fraction (∼0.25) is the saturation concentration point for the given boiler temperature

and pressure. As the ammonia mass fraction in the basic solution increases, absorber sat-
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Figure 3.3 Effects of pressure ratio on the effective first law and exergy efficiencies for
different rectification cooling sources for no superheater condition. Case I -Rectification
by internal cooling source, and Case II -Rectification by external cooling source

uration pressure also increases. When the absorber saturation pressure increases up to the

high pressure of the cycle, the maximum limit for the ammonia mass fraction is reached.

These limiting pressures are evidenced when net work output and either first law or ex-

ergy efficiency are zero as shown in Figures 3.4(a-b). The difference between the cases of

internal and external rectification becomes very small when the ammonia concentration is

increased as shown in Figure 3.4.

The effects of pressure ratio and superheater on the cycle net work and cooling outputs

are shown in Figure 3.5. The effect of superheater on the net work output is significant at

high turbine efficiency, as the maxima point of the net work output increases approximately

10% for turbine efficiency higher than 75%. However, as shown in Fig. 3.5(b), the cooling
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Figure 3.4 Effects of ammonia mass fraction on the effective first law and exergy ef-
ficiencies for different rectification cooling sources for no superheater condition. Case
I-Rectification by internal cooling source, and Case II-Rectification by external cooling
source

output notably decreases for the superheater case. The cycle produces no cooling output

for turbine efficiency less than 50%. Cooling output is limited at low pressures by higher

turbine exhaust temperatures and bounded at higher pressures by the low production of

vapor as shown in Fig. 3.5(b). When the turbine inlet temperature is increased with a

superheater, the work output is increased; however, the cooling output is decreased as the

turbine exit temperature is increased.

For different rectification cooling sources, the effects of pressure ratio and superheater

on the effective first law and exergy efficiencies are shown in Figures 3.6(a-b). When ex-

ternal cooling is used in the rectifier (Case II), the effect of superheater on the effective first

law efficiency shows no significant difference; however, the maxima point of the effective
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Figure 3.5 Effects of pressure ratio and superheater on the net work and cooling outputs for
different rectification cooling sources. Case I-Rectification by internal cooling source, and
Case II-Rectification by external cooling source

first law efficiency for internal cooling is increased approximately 0.1-0.5% for different

turbine efficiencies as shown in Fig. 3.6(a). The effective exergy efficiency maxima point

increases approximately by 1-5% for internal cooling (Case I) as shown in Fig. 3.6(b),

though the superheater effect on the effective first law efficiency for the external cooling

case (Case II) is not considerable. The effects of ammonia mass fraction and superheater

on the effective first law and exergy efficiencies for different rectification cooling sources

are shown in Figures 3.7(a-b). When the ammonia mass fraction is higher than 0.35, there

is a slight difference in the effective first law and exergy efficiencies between the superheat

and no superheat cases as shown in Figures 3.7(a-b).
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Figure 3.6 Effects of pressure ratio and superheater on the effective first law and exergy effi-
ciencies for different rectification cooling sources. Case I-Rectification by internal cooling
source, and Case II-Rectification by external cooling source

It can be concluded that, for external rectification cooling source (Case II), an effective

first law efficiency of 3–5% and an effective exergy efficiency of 18–28% with 50–75%

turbine efficiency could be achieved for a boiler temperature of 83.4 °C and a rectifier tem-

perature of 41.7 °C. The maximum effective first law and effective exergy efficiencies, for

50% and 75% turbine efficiency, can be increased to 3.5–5.5% and 22–33%, respectively

by using the internal rectification cooling source (Case I) and superheating the ammonia

vapor. No significant difference was observed between the external and internal cooling

source for rectification cases at ammonia mass fractions higher than 0.35. The boiler pres-

sure is kept constant when the ammonia concentration in the absorber is increased. For

the operating conditions that are experimentally studied, the optimum concentration for the
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Figure 3.7 Effects of ammonia mass fraction and superheater on the effective first law
and exergy efficiencies for different rectification cooling sources. Case I-Rectification by
internal cooling source, and Case II-Rectification by external cooling source

effective first law and exergy efficiencies is in the range of 0.3 to 0.35. In order to see the

effect of ammonia mass concentration on the other cycle parameters, such as, vapor con-

centration, mass flow rate fraction, quality after turbine, and cooling and net work outputs,

the results are given in Table 3.2 for three different ammonia mass concentrations. The

boiler and absorber temperatures were kept at 83.4 °C and 31.4 °C, respectively, and the

turbine efficiency was 90% for all cases. In addition, another boiler pressure case is shown

to see the difference between the previous boiler pressure case and the higher pressure case.

The pressure at the separator and the temperature at the rectifier column exit determine

the vapor concentration. As seen in the table, the vapor concentration has a significant

effect on the turbine exit temperature. The higher the vapor concentration at the turbine
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Table 3.2 The effect of strong solution concentration and boiler pressure on cycle outputs
Parameter x=0.35 x=0.40 x=0.50
Pboiler 5.16 7.00 5.16 7.00 5.16 7.00
Pabsorber (bar) 1.6 2.2 3.9
xvapor (kg NH3/kg vapor) 0.993 0.995 0.993 0.995 0.993 0.995
xweak (kg NH3/kg solution) 0.272 0.322 0.275 0.324 0.284 0.330
ṁvapor/ṁstrong solution(%) 10.9 4.2 17.4 11.3 30.5 25.6
Turbine exit temperature (°C) -12.0 -20.5 2.0 -10.9 28.8 12.9
Turbine exit vapor quality (%) 97.97 96.29 98.49 97.50 99.41 98.88
Cooling output (kW) 9.38 5.62 7.26 10.33 0.00 1.88
Net work output (kW) 13.86 5.31 16.94 13.63 10.29 17.12

inlet, the lower the turbine exit temperature, which increases the cooling output from the

cycle. The mass fraction of the vapor with respect to the strong solution mass flow rate

increases when the ammonia concentration is increased in the strong solution. However,

when the boiler pressure is increased from 5.16 to 7.0 bar, the vapor mass flow rate fraction

decreases, and the effect of boiler pressure on the vapor mass fraction is significant for

the ammonia concentration of 0.35. The speed of the scroll expander is increased, if the

vapor flowrate increases, which in turn gives higher efficiency. In order to maximize the

turbine efficiency, the higher flow rates were targeted in the experiments. The choice of 0.40

ammonia concentration would give higher flowrates than 0.35 concentration, although the

effective efficiencies are higher for the 0.35 case. If we increase the concentration further to

0.5, the cooling output almost vanishes as seen in the Table 3.2. Therefore, the experimental

study was targeted to use the strong solution concentration of 0.40.

3.4 Vapor Concentration

In this section, the parametric study of the previous section is extended to understand

the effect of different boiler exit configurations and absorber temperature on vapor produc-
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tion, net work, and cooling output. The theoretical simulations are based on the ideal cycle,

which is shown in Fig. 3.1. Rectifier exit temperature, which was constant in the previous

section, is controlled by the vapor concentration that leaves the rectifier. The effects of rec-

tifier and superheater on the cycle performance are investigated for three cases as described

in Table 3.3. In the first case (R), the ammonia vapor leaves the boiler and goes to the

rectifier and the ammonia mass concentration is increased by providing cooling. Then the

vapor expands through the turbine. A superheater is included for the second case (R+S),

in which the ammonia vapor that leaves the rectifier is superheated to 125 °C as the same

heat source is used for the boiler and the superheater . The final case is the base case (B),

in which no superheater or rectifier is used, so that the ammonia vapor goes directly from

the boiler to the expander without being rectified or superheated.

The simulations are also extended to determine the performance of the cycle at different

heat source temperatures, over a range of 90 °C to 170 °C. A range of technically sound

isentropic turbine efficiencies are assumed regardless of the type of the expander, and their

impact on the cycle efficiency is illustrated with the results. In addition, the turbine exit

quality is shown with respect to the pressure ratio and for different boiler exit cases.

Several assumptions used in the previous section are changed: The absorber tempera-

ture is decreased to 10 °C to find out the theoretical limits of the cycle outputs. In addition,

the absorber pressure, which is 2.0 bar, is kept close to the experimental condition given in

the previous section. The absorber concentration, 0.54 kg NH3/kg solution, is calculated

as the saturated liquid concentration at the given absorber pressure and temperature, so

that saturated liquid flows through the strong solution pump to eliminate cavitation prob-
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lem. Isentropic pump efficiency is increased to 85%, which more common in the industrial

applications.

Table 3.3 Rectifier exit scenarios that control the vapor concentration
Case Rectifier Superheater Controlled Parameter ηt
R Yes No xrecti f ier = 0.98, 0.995 0.5, 0.75, 1.0

R+S Yes Yes
xrecti f ier = 0.98, 0.995,
Tsuperheater=125 °C 0.5, 0.75, 1.0

B No No
Saturated vapor condition at the
boiler exit 0.5, 0.75, 1.0

The variation of net work, cooling output, effective first law and exergy efficiencies

with pressure ratio (Pboiler/Pabsorber), isentropic turbine efficiency (η t) for a heat source

temperature of 130 °C are shown in Figures. 3.8-3.9. The maximum theoretical net work

and cooling output from the cycle (when η t=1.0) are approximately 160 kJ/kg solution and

75 kJ/kg solution, respectively. The maximum points of net work output for different boiler

exit cases are seen between the pressure ratios of 4 to 8, however the highest cooling output

occurs between the pressure ratios of 8 to 19. The third case (B), where the saturated vapor

exiting from the boiler goes to the turbine directly, has the highest net work and effective

efficiencies.

As shown in Fig. 3.8(b), cooling is not possible for case B except at high pressure ratios

of 13-20. The effect of ammonia concentration on the rectifier exit is also illustrated in

Figures 3.8-3.9 for two different concentrations. When the saturated vapor is rectified to a

concentration of 0.995, the cooling output is substantially higher than for the concentration

of 0.98, but the difference is not significant in the net work output. The importance of

turbine efficiency is also illustrated in Fig. 3.10. The net work and cooling outputs of the
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Figure 3.8 Effects of pressure ratio, cycle configurations, and expander isentropic efficiency
on the net work and cooling outputs. a) Net work output b) Cooling output

cycle are very sensitive to the turbine performance. For the case (R), a reduction in turbine

efficiency from 100% to 50% leads to a reduction in the cooling output by 66%.

3.5 Vapor Production

A comparison of the vapor mass flow rate between the base case and the two cases

shows that the mass flow rate is adversely affected by the rectifier process as shown in Fig.

3.10. The practical temperature of the absorber is typically 30-40 °C, so a 30 °C case is also

included and compared with the 10 °C case in this section. It is shown in Fig. 3.10 that the

vapor mass flow produced by the cycle higher at a lower absorber temperature. At a given

absorber temperature, all three cases produce equal vapor flow rate after a certain pressure

ratio. The lower effective efficiency results for R and R+S cases show that purifying the
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Figure 3.9 Effects of pressure ratio, cycle configurations, and expander isentropic efficiency
on the effective first law and exergy efficiency. a) Effective first law efficiency b) Effective
exergy efficiency

ammonia vapor increases the cooling output of the cycle significantly, however it does not

compensate for the power loss due to rectification.

In practical applications, the pressure ratios will be in the range of 6 to 12, where

substantial amount of power and cooling outputs can be obtained as shown in Fig. 3.8. The

effective efficiencies at high pressure ratios such as 16-18 are high, as shown in Fig. 3.9,

although the cooling and power outputs per unit solution flow rate are low due to the low

vapor production. As shown in Fig. 3.10, only 10-15% of the strong solution is vaporized

while the rest of the fluid is used for heat recovery.
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Figure 3.10 Effects of pressure ratio, cycle configurations, and absorber temperature on
vapor production

3.6 Absorber Temperature

As discussed in the sections 3.4 and 3.5, purifying the vapor by the rectifier does not

provide higher net work output as the vapor mass flow rate decreases. To expand the anal-

ysis, an analysis for the absorber temperatures of 10 °C and 30 °C is performed to see the

effect of absorber temperature on vapor production. The ammonia mass fractions for the

absorber temperatures of 10 °C and 30 °C are 0.54 and 0.37, respectively. When the ab-

sorber temperature is increased for the comparative study, the ammonia mass fraction in the

basic solution is decreased to keep the absorber exit as saturated liquid. As ammonia mass

fraction in the basic solution increases, the absorber saturation pressure also increases. The

higher boiling pressure is limited by the corresponding saturation pressure, above which

no vapor is produced as shown in Fig. 3.10. The lower pressure extreme is bound by the
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absorption-condensation pressure. The mass flow rate of the base case (B) is higher than

the other cases up to a pressure ratio of 14 for the absorber temperature of 10 °C. Even af-

ter this point, the first two cases (R, R+S) have lower efficiencies than the base case (B) as

shown in Figures 3.9(a) and 3.9(b) due to the available exergy destruction by the rectifying

process.
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Figure 3.11 Effects of pressure ratio, cycle configurations, absorber temperature and ex-
pander isentropic efficiency on net work output. a) Turbine efficiency of 100% b) Turbine
efficiency of 75%

The effect of absorber temperature on the cycle output is shown in Figures 3.11 and

3.14. As shown previously in Fig. 3.10, the vapor mass flow rate decreases as the ab-

sorber temperature increases. Therefore, the net work and cooling outputs are unfavorably

affected as shown in Figures 3.11-3.12. As demonstrated in Figure 3.11(a), increasing the

absorber temperature from 10 °C to 30 °C decreases the maximum net work by approx-
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imately 35%. The same temperature increase has more significant effect on the cooling

output, decreasing it approximately 53% as shown in Figure 3.12(a). As expected, a de-

crease in the turbine efficiency adversely affects the cycle output as illustrated in Figures

3.11(b) and 3.12(b).
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Figure 3.12 Effects of pressure ratio, cycle configurations, absorber temperature and ex-
pander isentropic efficiency on the cooling output. a) Turbine efficiency of 100% b) Tur-
bine efficiency of 75%

The efficiency of the turbine is crucial to the cycle performance especially for the cool-

ing output. When the turbine efficiency is 75%, the cycle cannot produce cooling for the

cases (R and xrecti f ier = 0.98), (R+S and xrecti f ier = 0.98) and (B) cases at 30 °C absorber

temperature as shown in Figure 3.12(b). As the cycle net work and cooling outputs de-

crease by increasing the absorber temperature, the effective efficiencies also decrease as

shown in Figures 3.13-3.14. As the absorber temperature is increased from 10 °C to 30 °C
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the maximum obtainable effective first law efficiency decreases from 21% to 16%. It must

be pointed out that the pressure ratios for these maxima are not the same (the pressure ratios

are 15.5 and 9 for 10 °C and 30 °C, respectively). A similar result is seen for the maximum

effective exergy efficiency, which goes down from 92% to 65% as the absorber temperature

goes up from 10 °C to 30 °C. The corresponding maximum effective first law and exergy

efficiencies for a turbine efficiency of 75% are approximately 15% and 67% respectively

for a 10 °C absorber temperature, which go down to 12% and 45% respectively for a 30 °C

absorber temperature as shown in Figures 3.13(b) and 3.14(b).
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Figure 3.13 Effects of pressure ratio, cycle configurations, absorber temperature and ex-
pander isentropic efficiency on effective first law efficiency. a) Turbine efficiency of 100%
b) Turbine efficiency of 75%

The absorber temperatures in the experimental study of Kalina cycle [34] and the theo-

retical work by Xu et al. [96] were 15 °C and 10 °C, respectively. Therefore, an absorber
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temperature of 10 °C is used in this study in order to be able to compare the maximum

theoretical performance with these studies. However, a 10 °C absorber temperature may

not be practical except at special locations and times of the year [105].
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Figure 3.14 Effects of pressure ratio, cycle configurations, absorber temperature and ex-
pander isentropic efficiency on effective exergy efficiency. a) Turbine efficiency of 100%
b) Turbine efficiency of 75%

3.7 Turbine Exit Quality

The turbine exit quality is another important parameter that should be taken into account

as the presence of liquid droplets in the turbine can cause blade damage and decrease the

thermal efficiency of the cycle. The quality of the exit stream from the turbine is shown in

Figure 3.15 for 30 °C absorber temperature case. An ideal turbine efficiency of 100% is

used in the analysis since maximum wetness is obtained with an ideal expansion process.

At 30 °C absorber temperature, the first case (R) with a higher ammonia concentration of
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0.995 could cause wetness problems as the quality decreases to less than 90% for a pressure

ratio greater than 10.
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Figure 3.15 Effects of pressure ratio and cycle configurations on turbine exit quality

3.8 Heat Source Temperature

The heat source temperature is varied for a range of 90-170 °C to find out the effect

on the cycle performance as shown in Fig. 3.16. As discussed in the previous section, in

order to assume a practical absorber temperature, a 30 °C absorber temperature is selected

for this study. Since the base case (Case B) produces the highest efficiencies as discussed

before, the effect of heat source temperature is studied for the base case only. The maxi-

mum effective first law efficiency is 20% when the heat source temperature is 170 °C. The

effective first law efficiency is in the range of 4-7.5%, 7-15%, and 10-20%, for turbine

efficiencies of 50%, 75%, and 100%, respectively. The effective exergy efficiency is in the
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range of 28-35%, 42-53%, and 58-72%, for turbine efficiencies of 50%, 75%, and 100%,

respectively. The effective first law and exergy efficiencies increase linearly with the heat

source temperature.
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Figure 3.16 Effects of heat source temperature and expander isentropic efficiency on cycle
efficiencies. a) Effective first law efficiency b) Effective exergy efficiency

3.9 Optimization Study

In this section, the cycle configuration shown in Fig. 3.2 is used to search the maxi-

mum outputs of the Goswami cycle for low-grade to mid-grade heat sources and to find

out the operational limits of the Goswami cycle for a broader range of parameters. In

the previous section, Chemcad was used to perform the theoretical study to show the ef-

fect of operating parameters, however due to the thermodynamic property limitation in the

software, boiler temperature was limited by 170 °C. Therefore, a new computational tool

is developed which uses previously developed thermodynamic property method by Xu and
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Goswami [106]. The details of thermodynamic properties and computational tool are given

in Appendices A and B, respectively. This tool is also required to analyze the experimental

data and calculate the performance of the experimental cycle. Cycle parameters that are

updated for the optimization study are given in Table 3.4, other parameters that are not

mentioned in the table are given in Table 3.1. As different turbine efficiency values are

studied in the previous sections, a fixed 85% turbine efficiency is assumed in this section,

this value can be realized practically when the system size output is scaled up to several

MW.

Initially, 85 °C boiler temperature case is aimed to provide the basis for the experimental

work, which targeted the same boiler temperature. The maximum values of cycle output

and operational limits of the experimental study are found by varying the strong solution

concentration and boiler pressure. Then, boiler temperature was varied between 100 °C to

350 °C to find out the cycle performance for low-grade to mid-grade heat sources.

Table 3.4 Cycle parameters assumed for the optimization study
Parameter Value Units
Pinch Point 10 °C
Minimum turbine exit vapor quality 90%
Recovery heat exchanger
effectiveness ε

85%

Isentropic turbine efficiency ηt 85%

The following assumptions are used in the analysis:

• The system low pressure was dictated by the basic solution concentration (xstrong)

and the absorption temperature of 35 °C.
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• The boiling conditions were completely specified, i.e. boiling temperature, pressure,

and basic solution concentration are provided as inputs.

• Effectiveness value was used for the heat recovery heat exchanger, while pinch point

limitation was 10 °C for the boiler, superheater, and refrigeration heat exchangers.

• Entropy generation for the boiler heat exchanger is checked during the simulations,

whenever the entropy generation is less than zero, the heat source mass flow rate is

increased to ensure that entropy generation in the boiler heat exchanger is greater

than zero.

• The degree of rectification was limited by either the specified rectifier exit tempera-

ture or an ammonia mass fraction of 0.999, whichever was encountered first.

• The quantity of cooling produced (if any) was calculated as the energy needed to heat

the expander exhaust from the exhaust temperature to 15 °C.

• Water was used as the chilled fluid in the refrigeration heat exchanger.

• Superheating is not considered in this simulation.

• Pressure drops were neglected.

3.10 Low-Grade Heat Source Analysis

The maximum points for net work, effective first law and effective exergy efficiencies

with respect to the strong solution concentration (xstrong) for a boiler temperature of 85

°C are shown in Fig. 3.17. The temperature of the saturated vapor leaving the separator
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is not changed; rectifier and superheater are not active in this analysis. The ammonia

concentration in the strong solution takes an important role as it defines the mass fraction

of the volatile component, which is ammonia for this study, however as seen in Fig. 3.17,

the maximum values of effective efficiencies do not change significantly with the strong

solution concentration. The effective first law efficiency is approximately 7.5% for the

whole range and the effective exergy efficiency changes from 38% to 45%. The maximum

work output is obtained at the highest concentration value of 0.8; the reason is explained

later in this section. If the strong solution concentration is chosen as 0.4, with a 1 kg/s

strong solution mass flow rate, this cycle can produce approximately 13 kW, the effective

first law and exergy efficiencies are 7% and 38%, respectively.
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Figure 3.17 Effective first law and exergy and work output of the Goswami cycle at a boiler
temperature of 85 °C
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For the maximum values of the cycle efficiencies and net work output, the vapor con-

centrations for each case are plotted in Fig. 3.18. The vapor concentration values for

maximum net work output are lower than the values for maximum cycle efficiencies. In

order to produce more work, more vapor should be produced, and this requires boiling of

water component as well. The vapor concentration values for maximum effective first law

and exergy efficiencies are very close to each other. It is shown in Fig. 3.18 that after a

strong solution concentration of 0.5, the vapor concentration is almost constant between

0.95 and 0.98. As the concentration in the strong solution increases, the vapor concentra-

tion at the turbine inlet also increases. The dew and bubble pressures increases when the

strong solution concentration increases, therefore the boiler pressure also increases. The

higher the pressure in the boiler, the lower the vaporization of water component, which

yields high vapor concentration.

The results for the ratio of vapor mass flow rate to strong solution flow rate for the

maximum values of cycle efficiencies and net work output are shown in Fig. 3.19. The

pressure ratio across the turbine is almost constant at 2.0 for maximum work output, which

is shown in Fig 3.20; therefore, the vapor flow rate should be maximized in order to max-

imize work output. As shown in Fig. 3.19, the vapor flowrate for maximum net work

output varies between 20% and 50%. The mass flowrate ratios for the maximum effective

first law and exergy efficiencies are close to each other. The vapor flowrate ratios for the

efficiencies vary between 7.5% and 40%. The vapor flowrate ratios for cycle efficiencies

increase gradually with increasing strong solution concentration. In order to maximize the

cycle efficiencies, the heat transfer irreversibilities across the cycle heat exchanger should
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Figure 3.18 Vapor concentration values for the maximum values of effective first law, ex-
ergy and work output at a boiler temperature of 85 °C

be minimized, the weak solution flow rate to strong solution mass flow rate for the recovery

heat exchanger should be maximized, however it should be mentioned that it is always less

than unity.

The pressure ratio of boiler to absorber, which defines the expansion ratio through the

turbine, is another important parameter. The pressure ratio of boiler to absorber for each

cycle output maximum is shown in Fig. 3.20. If the pressure ratio is increased, the potential

of producing more work increases; however, the increase in boiler pressure decreases the

vapor flow rate for the Goswami cycle, which hinders the potential of producing more

work. The pressure ratio across the turbine is almost constant at around 2.0 for maximum

work output as shown in Fig 3.20. The maximum points for the pressure ratio will help the

decision of turbine selection and design for the cycle.
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Figure 3.19 Mass fraction values for the maximum values of effective first law, exergy and
work output at a boiler temperature of 85 °C

Effective first law efficiency of the Goswami cycle with respect to pressure ratio at the

boiler temperature of 85 °C is shown in Fig. 3.22. As seen in the figure, when the strong

solution concentration is at the lowest, which is 0.2, the pressure ratio is limited in the

range of 1 to 5.5. The maximum effective first law efficiency decreases with increasing

the concentration until the strong solution concentration reaches 0.6, and then it starts to

increase from this point. The maximum effective first law efficiency is approximately 7%,

which can be reached at a strong solution concentration of 0.2 at a pressure ratio of 4.5

or at a strong solution concentration of 0.8 at a pressure ratio of 2.75. However, as shown

in Fig. 3.21, the boiler pressures are approximately 2.5 and 27.5 bars for strong solution

concentrations of 0.2 and 0.8, respectively. Although the first law efficiencies around 7%

seem low, they compare well with the ideal Lorenz cycle efficiency of 7.2% with finite heat
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Figure 3.20 Pressure ratios (Pboiler/Pabsorber) for the maximum values of effective first law,
exergy and work output at a boiler temperature of 85 °C

sources for the same boiler and absorber temperatures for maximum power [37]. It can be

concluded that low pressure conditions will decrease the cost of the equipment used in the

cycle, so the low strong solution concentration case is more favorable. Effective exergy

efficiency of the Goswami cycle with respect to pressure ratio at a boiler temperature of 85

°C is shown in Fig. 3.23. The maximum exergy efficiency varies between 35% and 45%.

Similar to the effective first law efficiency, the maximum exergy efficiencies are seen at the

strong solution concentration of 0.2 and 0.8.

The variation of net work with the pressure ratio (Pboiler/Pabsorber) is shown in Fig.

3.24. The limiting pressures of the cycle are evidenced when net work outputs are zero as

shown in the figure. The net work from the cycle is maximum at an ammonia mass fraction

of 0.8.
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Figure 3.21 Boiler pressures for the maximum values of effective first law, exergy and work
output at a boiler temperature of 85 °C

In order to evaluate the cooling output performance of the cycle, the rectifier exit tem-

perature is decreased from 75 °C to 35 °C. As shown in Fig. 3.26, cooling output increases

when the rectifier exit temperature decreases. Maximum cooling output occurs at ammonia

mass concentration of 0.5 and 0.6; as compared to the net work output (0.8), the cool-

ing output from the cycle is not possible above the strong solution concentration of 0.7.

As stated above the pressure ratio decreases when the ammonia concentration increases,

which leads to higher turbine exhaust temperatures due to the lower pressure ratios across

the turbine. This explains why cooling output decreases and not possible at higher am-

monia concentrations. As seen in Fig. 3.25, the effective first law and exergy efficiencies

decrease as the rectification temperature is reduced. This shows that the cycle performance

sacrifices in order to produce cooling. The decreases in efficiency terms are more signifi-
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Figure 3.22 Effective first law efficiency of the Goswami cycle at a boiler temperature of
85 °C.

cant after a strong solution concentration of 0.5. As discussed above, purifying the vapor by

the rectifier does not provide higher net work output as the vapor mass flow rate decreases.

3.11 Mid-Grade Heat Source Analysis

This section is focused on finding out the maximum performance of the cycle when it

utilizes solar thermal energy or geothermal sources, for this reason the boiling temperature

is changed between 100 °C to 350 °C. The cycle parameters for simulation are given in

Table 3.4. Since the pinch point temperature is set at 10 °C, this section covers the heat

sources between 110 °C to 360 °C. The design variables for the simulations are again boiler

pressure, temperature and basic solution concentration while net work output, effective first

law and exergy efficiencies are the main three parameters to evaluate the performance of

the cycle.
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Figure 3.23 Effective exergy efficiency of the Goswami cycle at a boiler temperature of 85
°C
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Figure 3.24 Net work output of the Goswami cycle at a boiler temperature of 85 °C
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Figure 3.25 Effective first law and exergy efficiency of the Goswami cycle for rectification
analysis at a boiler temperature of 85 °C

The simulation process is as follows. Initially, boiler temperature is specified, and

then strong solution concentration is varied for this boiler temperature. This step requires

special attention above 150 °C of boiler temperature, as strong solution concentration has

a certain range in which an ammonia-water mixture can exist. The critical temperature

and pressure of the ammonia-water mixture are shown in Fig. 3.27. To give an example,

ammonia-water mixture can exist at 250 °C as a saturation mixture if the concentration is

less than 0.6736. Therefore, the concentration range for 250 °C was chosen as 0.10 to 0.60

kg NH3/kg solution. The same principle applies to other boiler temperatures.

Then dew and bubble pressures for the corresponding temperature and concentration

are calculated. In order to have a liquid-vapor saturation mixture at the separator, the sys-

tem high pressure should be adjusted between the dew and bubble pressures. Fig. 3.28
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Figure 3.26 Net work and cooling outputs of the Goswami cycle for rectification analysis
at a boiler temperature of 85 °C
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Figure 3.27 Critical temperature and pressure of the ammonia-water mixture
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shows the pressure range at the temperature of 250 °C for different ammonia concentra-

tions. Therefore, the pressure range cannot be fixed and should be updated for every boiler

temperature and ammonia concentration. If the pressure is higher than the bubble pressure

(142.8 bar at 250 °C and 0.4 kg NH3/kg solution), the solution is in compressed state. If

the pressure is lower than the dew pressure (65.4 bar at 250 °C and 0.4 kg NH3/kg solution)

all of the solution is vaporized, which will result in no flow through the weak solution line.

In the simulations, a minimum ratio of the weak solution return mass flowrate to strong

solution mass flowrate is assumed as 10%. Therefore, the cycle performance is evaluated

by increasing the boiler pressure starting from Psat,vapor (dew pressure) to Psat,liquid (bubble

pressure). After defining boiler temperature, pressure, and strong solution concentration,

the rectifier exit and superheater temperatures are chosen for the simulation. By using the

following inputs, Pboiler, Tboiler, xstrong, Trecti f ier, Tsuperheater and the other cycle assumptions

given previously in Tables 3.1 and 3.4, the cycle simulation can be performed.

Before the results, it is noteworthy to mention that the turbine exit quality is an im-

portant parameter, and it should be taken seriously into account as the presence of liquid

droplets in the turbine can cause blade damage and decrease the thermal efficiency of the

cycle. Therefore, it is assumed during the simulations that the turbine exit quality cannot

be lower than 90%. Simulations showed that for the boiler temperature below 150 °C, the

turbine exit quality is always higher than 90%, however, in the case of above 150 °C there

are some conditions at which the quality drops to lower values. To eliminate low quality

exit conditions, expansion stage is increased and reheaters are included in the simulations.

If the turbine exit quality is lower than 90%, a two stage turbine is used. The vapor is
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Figure 3.28 Bubble and dew pressure of the ammonia-water mixture at 250 °C

expanded to a 90% quality through the first turbine, and then reheated and sent to second

stage. The turbine exit condition is checked again, and the simulation is continued until the

turbine exit quality higher than 90% is satisfied. Fig. 3.29 shows the effect of reheating and

multi-stage expansion. As seen in the figure, both efficiencies are significantly increased

with the use of multi-stage turbines.

In the plots, both single and multi-stage results are shown to compare the values. For

the single stage simulations, if the turbine exit quality is less than 90%, the vapor is ex-

panded through the turbine until the turbine exhaust quality reaches 90%, then the exhaust

is throttled to the absorber pressure and sent to the absorber.

Net work output comparison of the Goswami cycle with multiple and single turbine

stages at boiler temperature of 100-350 °C are shown in Figures 3.30-3.31. The work out-
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Figure 3.29 Effective first law and exergy efficiencies for single and multi-stage turbines at
a boiler temperature of 250 °C

put of the Goswami cycle increases with the heat source temperature for the multi-stage

expansion case, however it follows a reverse path for the single stage turbine for the heat

source temperatures between 200-350 °C as shown in Fig. 3.31. The effect of using multi

stage turbine is critical above heat sources temperature of 175 °C. As the system high pres-

sure is varied between the bubble and dew pressures for the corresponding boiler temper-

ature and strong solution concentration, and maximum work output is chosen. Therefore,

each point shown in the figures has a different system high pressure, and the only common

operating condition is the absorber temperature, which is 35 °C for all cases.

The maximum net work occurs at the lowest strong solution for the multi-stage ex-

pansion. The enthalpy values of the ammonia-water mixtures increases by decreasing the

ammonia concentration, in addition the system low pressure is at a minimum (~0.25 bar)
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Figure 3.30 Net work output comparison of the Goswami cycle at boiler temperatures of
100-175 °C. a) Multiple Turbine Stages and b) Single Stage Turbine

for the strong solution concentration of 0.1 kg NH3/kg solution. Boiler pressure values

for the maximum work output for the boiler temperatures of 100-350 °C are shown in Fig.

3.32. The minimum pressure required at the boiler is 50 bar for 250 °C and higher, however

the maximum boiler pressure value for the heat source temperature of 150 °C and lower is

approximately 50 bar.

The number of stage used for the multi-stage turbine simulations are given in Table

3.5. The first additional stage is required at the boiler temperature of 150 °C and the strong

solution of 0.1 kg NH3/kg solution. For the low ammonia concentration cases, the turbine

exhaust is more prone to wetness because of high water content; this requires additional

reheater and turbine stage when the turbine exhaust is still at higher pressure than the

system low pressure. It is seen from Fig. 3.30 that for the boiler temperature of 175
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Figure 3.31 Net work output comparison of the Goswami cycle at boiler temperatures of
200-300 °C. a) Multiple Turbine Stages and b) Single Stage Turbine
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Figure 3.32 Boiler pressure values at boiler temperatures of 100-300 °C
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Table 3.5 The number of stages used for multi-stage turbine case
x (kg NH3/kg solution)

T (°C) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100 1 1 1 1 1 1 1 1
125 1 1 1 1 1 1 1 1
150 2 1 1 1 1 1 1 1
175 2 2 1 1 1 1 1 1
200 2 2 2 2 1 1 1 1
225 2 2 2 2 2 2 2
250 2 2 2 2 2 2
275 2 2 2 2 3
300 3 3 3 3
325 3 3 3
350 3

°C and strong solution concentration of 0.1 kg NH3/kg solution, the work output increases

significantly for the two stage case compared to single stage case.

Effective first law efficiency comparison of the Goswami cycle with multiple and single

turbine stages at the boiler temperatures of 100-350 °C is shown in Figures 3.33-3.34. The

maximum effective first law efficiency is between 18-31% for the heat source temperature

of 250 °C and 350 °C. If the concentration value of 0.1 is chosen, the maximum effective

first law efficiency values are in 23-31% range. It is also seen in the Fig. 3.33 that single

and double stage results are similar for heat source temperatures up to 150 °C. However,

the effective first law efficiency values for multiple stage case is significantly higher than

the single stage case for heat source temperature above 150 °C, as shown in Fig. 3.34.

Regarding the sensitivity of the effective first law efficiency with ammonia concentration,

the results showed no significant changes with the strong solution concentration.

The effective first law efficiency increases when the heat source temperature increases

until the boiler temperature of 300 °C. The number of stages required at low concentration
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Figure 3.33 Effective first law efficiency comparison of the Goswami Cycle at boiler tem-
peratures of 100-175 °C. a) Multiple Turbine Stages and b) Single Stage Turbine

is increased to 3 for the boiler temperature of 300 °C; however, the pressure ratio at the

last stage is at least 6 times lower than the ratio of 275 °C boiler temperature. As an

example, for the boiler temperature of 300 °C and strong solution concentration of 0.1,

the temperature and pressure of the vapor after the second stage are 94.3 °C and 0.894

bar, and the system low pressure is 0.25 bar. As the fluid pressure is approximately 3.6

times higher than the system low pressure, it could be still utilized to produce work by

the third turbine stage. The heat source temperature is assumed to be constant for the

boiler and reheaters. Therefore, the exhaust vapor is reheated and expanded to the system

low pressure. The temperature of the vapor after the last turbine is 174.9 °C, which is high

compared to the previous stage exhaust temperature. If only two stages are used in this case,

the effective first law efficiency would be 23.82%, which is lower than the three turbine
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Figure 3.34 Effective first law efficiency comparison of the Goswami Cycle at boiler tem-
peratures of 200-300 °C. a) Multiple Turbine Stages and b) Single Stage Turbine

stage efficiency value of 26.55%. This shows that the cycle efficiency improves with the

third stage, however the third stage heat input is not utilized efficiently as the vapor exhaust

is still at high temperature, which is 174.9 °C. This analysis will be expanded further by the

exergy analysis in this chapter to find alternative ways to utilize the last stage waste heat.

Effective exergy efficiency comparison of the Goswami cycle with multiple and single

turbine stages for boiler temperatures of 100-350 °C are shown in Figures 3.35-3.36. The

effective exergy efficiency values are between 40-62% and 45-68% for 100-175 °C and

200-350 °C, respectively. As shown in Fig. 3.36, the effective exergy efficiency values for

300 °C were lower than for 250 and 275 °C, the reason is discussed above. The single and

multi-stage expansion difference for the exergy efficiency is seen clearly in the Fig. 3.36,
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Figure 3.35 Effective exergy efficiency comparison of the Goswami Cycle at boiler tem-
peratures of 100-175 °C. a) Multiple Turbine Stages and b) Single Stage Turbine

the exergy efficiency decreases with increasing heat source temperature for the single stage

case.

It is seen from Fig. 3.36 that the boiler temperatures of 250-275 °C cases have higher

exergy efficiency values than 300 °C. As it is stated above, the cycle requires 3 turbine

stages for 300 °C; however, the last stage pressure is not high enough to utilize the reheater

effectively. To quantify this statement, exergy analysis is conducted. Unlike energy, exergy

is not conserved (except for ideal processes); rather it is destroyed due to irreversibilities

in any real process. Exergy analysis is conducted to calculate the destruction of exergy,

which is wasted potential for the production of work [30, 107]. Hasan and Goswami [97]

performed the exergy analysis of the combined power/cooling cycle for heat source temper-

atures of 47-187 °C, so the same methodology was used here. If the ambient temperature
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Figure 3.36 Effective exergy efficiency comparison of the Goswami Cycle at boiler tem-
peratures of 200-300 °C. a) Multiple Turbine Stages and b) Single Stage Turbine

To is taken as the reference temperature, then exergy per unit mass of a stream, ε , is given

as,

ε = (h−ho)−To(s− so) (3.4)

For a mixture, the exergy is given in terms of exergy of pure components evaluated at

component partial pressure and mixture temperature. Szargut [108] suggested that for a

binary mixture, exergy could be given in terms of enthalpy, entropy, and composition of

mixture as follows,

ε = (h−Tos)−α +βx (3.5)

where x is the mass fraction of one component in the mixture, and α and β are constants

whose values are set arbitrarily such that exergy in the cycle is always positive. It can be
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shown using material and exergy balances that in calculating the exergy destruction in the

cycle for any control volume, the constants α and β vanish and, therefore, have no effect

on the value of exergy destruction in the cycle. In this study, α is set as 50, β is set as 250,

the reference state is calculated by using ambient temperature, To , 25 °C, and the strong

solution concentration.

Exergy destruction X is calculated by rearranging the exergy balance equation for a

control volume at steady state in the following form [30, 107],

X = ∑miεi−∑meεe−Wcv +∑

(
1− To

T

)
Q (3.6)

where Wcv is the work of control volume, m is the mass flow rate, X is exergy destruction

within the control volume, Q is the heat transfer with the surroundings or other fluids, and

subscripts i and e are used for inlet and exit, respectively. Average temperature is used

whenever temperature is not constant. The exergy destruction of each component for the

cycle (shown in Fig. 3.2) is as follows:

The exergy destruction in the pump, recovery heat exchanger, boiler heat exchanger,

and separator and rectifier are given in Eqs. 3.7-3.10.

Xpump = m1ε1−m2ε2 +Wpump (3.7)

Xrecoveryheat exchanger = m2ε2 +m9ε9−m3ε3−m10ε10 (3.8)

Xboiler heat exchanger = m3ε3 +mhs,inεhs,in−m4ε4−mhs,outεhs,out (3.9)
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Xseparator+recti f ier = m4ε4 +mc f ,inεc f ,in−m9ε9−m5ε5−mc f ,outεc f ,out (3.10)

where the subscripts cf refers to the cold fluid used for the rectification cooling needs.

The exergy destruction in the superheater heat exchanger, turbine, and refrigeration heat

exchanger are given Eqs. 3.11-3.13.

Xsuperheater = m5ε5 +mhs,inεhs,in−m6ε6−mhs,outεhs,out (3.11)

Xturbine = m6ε6−m7ε7−Wturbine (3.12)

Xre f rigerationheat exchanger = m7ε7 +mre f ,inεc f ,in−m8ε8−mre f ,outεc f ,out (3.13)

where the subscripts ref refers to the fluid that will be cooled by the turbine exhaust. The

exergy destruction in the absorber and throttling valve are given Eqs. 3.14-3.15.

Xabsorber = m8ε8 +m11ε11 +mc,inεc,in−m1ε1−mc,outεc,out (3.14)

Xthrottlingvalve = m10ε10−m11ε11 (3.15)

where the subscripts c refers to the condensing fluid which is used to regenerate the cycle

working fluid. The heat losses from the heat exchangers and other components to the

ambient are neglected. The sum of the each component exergy destruction will give the

total exergy destruction in the cycle while in steady-state operation.

The exergy destruction in the cycle for different boiler temperature and basic solution

concentration is shown in Fig. 3.37. As seen in the figure, the exergy destruction increases
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Figure 3.37 Exergy destruction values at boiler temperatures of 100-350 °C

with increasing boiler temperature. When the single and multi-turbine stage cases are com-

pared, it is clear from the figure that cycles with the multi-stages have smaller exergy de-

struction above the boiler temperature of 175 °C. When the multi stage case is considered,

it is seen from the Fig. 3.37(a) that the maximum destruction occurs at the boiler tem-

perature of 300 °C. The sources of exergy destruction in the cycle for a strong solution of

0.1 kg NH3/kg solution are tabulated in Table 3.6. The main sources of exergy destruc-

tion are heat exchangers, absorber, and turbine stages. For most of the cases, the dominant

exergy destruction source is the absorber. The exergy destruction at the absorber peaks at

the boiler temperature of 300 °C. As discussed before, the last stage turbine temperature is

high compared to other cases, which increases the absorber cooling load as well.

107



www.manaraa.com

Table 3.6 Exergy destruction in the cycle for various boiler temperatures and strong solution
concentration of 0.1 kg NH3/kg solution

T (°C) Heat Ex. Absorber Turbine St. Rest Total
100 14.8 (48.8%) 10.0 (33.0%) 5.2 (17.0%) 0.4 (1.2%) 30.3
125 16.0 (18.1%) 52.5 (59.4%) 19.4 (22.0%) 0.4 (0.5%) 88.4
150 33.0 (26.4%) 65.7 (52.7%) 25.2 (20.2%) 0.9 (0.7%) 124.8
175 32.1 (10.9%) 191.5 (64.7%) 71.7 (24.2%) 0.6 (0.2%) 295.9
200 33.4 (11.1%) 185.2 (61.3%) 82.7 (27.4%) 0.9 (0.3%) 302.2
225 34.4 (11.2%) 179.5 (58.3%) 92.5 (30.0%) 1.6 (0.5%) 308.0
250 37.2 (11.8%) 174.0 (55.2%) 101.4 (32.2%) 2.5 (0.8%) 315.1
275 38.7 (11.4%) 170.3 (50.0%) 127.6 (37.5%) 3.8 (1.1%) 340.5
300 96.9 (21.2%) 237.6 (52.1%) 116.0 (25.4%) 5.7 (1.3%) 456.2
325 95.2 (21.2%) 203.2 (52.1%) 128.7 (25.4%) 8.4 (1.3%) 435.5
350 98.1 (22.7%) 186.1 (43.0%) 136.5 (31.5%) 12.3 (2.8%) 433.0
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Figure 3.38 Turbine exit temperatures at boiler temperatures of 100-350 °C

The turbine exit temperatures of the cycle for all boiler temperatures and strong solution

concentrations are shown in Fig. 3.38. For multi-turbine stage cases, the turbine exit

temperature is at a maximum for the boiler temperature of 300 °C. The temperature of

the vapor after the second turbine for the boiler temperature of 300 °C and strong solution
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concentration of 0.1 to 0.4 kg NH3/ kg solution are 94.3 °C, 107.9 °C, 136.8°C, and 206.6

°C, respectively. After reheating the vapor to 300 °C temperature, the vapor temperature

after the last turbine are 174.9 °C, 203.4 °C, 177.85 °C, and 111.1 °C for the same boiler

temperature and strong solution range. As discussed before, the effective exergy efficiency

of 300 °C boiler case is lower than 275 °C. Therefore, it is obvious that reheating the vapor

to 300 °C temperature does not work efficiently.

a)
Turbine 
1st Stage

Turbine 
2nd Stage

Turbine 
last Stage

b)
Turbine 
1st Stage

Turbine 
2nd Stage

Turbine 
last Stage

Reheater 1 Reheater 2

Reheater 1 Reheater 2

Single reheater  line

Figure 3.39 Partial superheating cases. a) Two hot water stream for reheating b) Single hot
water stream for reheating

The partial superheating case was conducted to tackle this problem. The vapor is re-

heated to temperatures less than the boiler temperature and the efficiency values were re-

calculated. There might be a reheating temperature less than 300 °C where efficiency values

are higher than the one at 300 °C. To give an example, the boiler temperature of 300 °C

and strong solution of 0.1 kg NH3/ kg solution is taken; the vapor temperature after the 2nd
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Table 3.7 Effective first law and exergy efficiencies for partial superheating cases
Reheating to 300 °C PS D∗ PS S∗∗

xstrong ηI,e f f ηexergy,e f f ηI,e f f ηexergy,e f f ηI,e f f ηexergy,e f f
0.1 26.55 64.86 27.48 66.52 27.47 67.03
0.2 23.83 58.63 25.26 60.99 25.33 62.25
0.3 22.72 55.93 23.41 58.09 23.71 59.00
0.4 22.08 54.27 22.08 54.38 21.98 54.51

∗Partial Superheating, Double Reheater Stream
∗∗Partial Superheating, Single Reheater Stream

turbine was 94.3 °C. The vapor is reheated from 95 °C to 300 °C and results were compared

to find the maximum efficiency. This case is labeled as partial superheating with double

reheater stream as two reheater water line at the same temperature were used. The sec-

ond option can be using a single reheating stream instead of two for the 3 stage cases. As

shown in Fig. 3.39(b), the reheating stream after the first reheater is directed to the second

reheater. It should be kept in mind that, the temperature of the reheating hot water after the

first reheater heat exchanger drops, so it is not possible to increase the vapor temperature

to boiler temperature at the second reheater, the temperature is always less than the boiler

temperature.

To compare the effect of partial superheating, the values at 300 °C are given in Table

3.7. The increase in efficiency terms are between 0.9% and 3.6%. It should be kept in mind

that, the partial superheating case with single stream line can be applicable only to the 3

stage cases. The maximum effective first law and exergy efficiencies were updated with the

partial superheating cases and given in Tables 3.8 and 3.9.

The partial superheating case studied previously to achieve a higher efficiency values at

higher boiler temperatures. The reheating temperature was varied to find the best reheating

110



www.manaraa.com

Table 3.8 The maximum effective first law efficiency values
x (kg NH3/kg solution)

T (°C) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100 10.03 9.00 8.58 8.18 7.83 7.76 8.13 8.79
125 13.24 11.71 11.08 10.63 10.18 10.05 10.38 11.06
150 15.77∗ 13.89 13.27 12.66 12.13 11.95 12.29 12.94
175 18.50∗ 16.05∗ 14.11 14.22 13.61 13.20 13.09 14.21
200 21.00∗ 18.20∗ 16.85∗ 15.91∗ 14.49 14.31 14.91∗ 15.97
225 23.34 20.44∗ 18.58∗ 17.42∗ 16.39 16.00 16.41
250 25.46∗ 22.58 20.57 19.17 18.04 16.92
275 26.51 24.57 22.54 20.94 19.33∗∗

300 27.48∗ 25.33∗∗ 23.71∗∗ 22.08
325 29.25∗ 26.80 25.17
350 30.76

∗Partial Superheating, Double Reheater Stream
∗∗Partial Superheating, Single Reheater Stream

temperature, which minimizes the exergy losses. If the reheating temperature was kept

constant, the question arises whether the high temperature vapor can be used as waste heat

to increase the overall cycle efficiencies. The high temperature vapor can be used as a heat

source for a bottoming cycle or a heat recovery system. Therefore, in order to examine the

possible use of the high temperature vapor, a combined cycle and a vapor heat recovery

cases were conducted for the boiler temperature of 300 °C. Firstly, the combined cycle

analysis is presented, it is followed by the vapor heat recovery case, and then the results

will be presented.

The combined cycle has a top and bottom Goswami cycles. As shown in Fig. 3.40, the

turbine exhaust of the top Goswami cycle can be utilized by heating the bottom Goswami

cycles working fluid. The simulation of the combined cycle is a complex problem as the

optimization of the bottom cycles is also required. The detailed description of the top cycle

and the first bottoming cycle are shown in Fig. 3.41. The operating conditions of maximum

111



www.manaraa.com

Table 3.9 The maximum effective exergy law efficiency values
x (kg NH3/kg solution)

T (°C) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
100 49.61 44.42 42.53 40.92 39.61 39.59 42.45 47.80
125 56.74 48.33 45.73 44.33 43.02 42.91 45.55 50.55
150 58.21∗ 54.43 48.14 46.33 44.76 44.66 47.32 52.20
175 61.48∗ 53.45∗ 49.18 48.03 45.92 45.51 47.50 51.02
200 64.58∗ 56.19∗ 51.26∗ 48.33∗ 44.51 44.16 47.33∗ 52.59∗

225 66.57∗ 59.18∗ 53.24∗ 49.41∗ 46.88∗ 46.99∗ 49.30∗

250 67.98 61.50∗ 56.31∗ 52.51∗ 49.74∗ 47.32∗

275 67.17∗ 62.90 58.38∗ 54.99 50.85∗∗

300 67.03∗∗ 62.25∗∗ 59.00∗∗ 54.51∗∗

325 68.16∗∗ 63.33∗∗ 58.99∗∗

350 68.17∗∗
∗Partial Superheating, Double Reheater Stream
∗∗Partial Superheating, Single Reheater Stream

Absorber

Top Goswami  Cyle 

Bottom Goswami 
Cyle 1

Turbine

Bottom Goswami 
Cyle 2

Figure 3.40 Schematic description of the combined cycle, top and bottom Goswami cycles

effective exergy efficiency are used to simulate the top cycle, therefore the mass flow rate

and temperature of the vapor are known. The boiler temperature, system high pressure,

and strong solution concentration of the bottom cycle will define the temperature of state
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8’ as shown in Fig. 3.41, which enters the recovery heat exchanger. The temperature of

state 8’ is independent of the strong solution mass flow rate. By performing recovery heat

exchanger calculations, the temperature of state 3’ is determined. Then, the boiler heat

exchanger calculations are performed and bottom cycle strong solution mass flow rate is

found.

The entropy generation in a certain control volume cannot be lower than zero, based on

the second law of thermodynamics, and this constraint is applied to all heat exchangers as

well as boiler heat exchangers. In the previous analysis, the heat source mass flow rate of

the top cycle is calculated based on the pinch point assumption, and then the entropy gen-

eration is calculated for the heat exchanger. If the entropy generation term is less than zero,

which is an impossible process, the heat source mass flow rate is increased to satisfy the

entropy generation constraint. In this case, the top cycle vapor mass flow rate is constant,

therefore the bottom cycle mass flow rate is calculated based on the pinch point assump-

tion, and then if the entropy generation term is negative, the pinch point value is increased

until the entropy generation is higher than zero. Whenever the pinch point increases, the

mass flow rate of the bottom cycle decreases, and the temperature of the top cycle vapor

after the heat exchanger can be still high. For this reason, when the top cycle vapor is above

150 °C, two bottom cycles are required to cool down the high temperature vapor of the top

cycle to lower than 100 °C.

In order to search the maximum work output from the bottoming cycle, the system high

pressure is varied between the bubble and dew point pressures for the corresponding boiler
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Figure 3.41 Detailed description of the combined cycle, top and the first bottoming
Goswami cycles

temperature and strong solution concentration. The strong solution concentration is varied

between 0.1 and 0.8 kg NH3/kg solution for the bottom cycle simulations.
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The vapor heat recovery system is shown in Fig. 3.42. The Goswami cycle system

is simpler than the Kalina cycle distillation and condensation subsystems, it has two heat

recovery heat exchanger, one separator and a pump as shown in Fig.3.42. The strong

solution is reheated first by the liquid weak solution return from the separator. Then, it

is reheated by the high temperature turbine exit vapor, and then it enters the boiler heat

exchanger. As described above, entropy generation constraint is also implied to the vapor

heat recovery exchanger.
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Figure 3.42 Schematic description of the vapor heat recovery system

The combined cycle and vapor heat recovery analysis are conducted for the top cycle

boiler temperature of 300 °C. The efficiencies of the analysis are compared with the top
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cycle alone for the boiler temperatures of 275 °C and 300 °C. The effective first law and

exergy efficiencies are shown in Table 3.10. As it is seen in the table, when the two bot-

toming cycles are used for the top cycle boiler temperature of 300 °C, the effective first

law efficiency increases approximately 1-3.5% compared to the stand alone top cycle. The

effective exergy efficiency is also increased approximately 2.5-12.7%. In addition, it is

shown in the Table 3.10 that the efficiency terms of 300 °C case are increased compared

to the boiler temperature of 275 °C case by utilizing the turbine exhaust vapor. The vapor

heat recovery system improves the efficiencies significantly for the concentration values of

0.1 and 0.2. Due to the entropy generation constraint, this system cannot be used for the

strong solution concentration of 0.4. It is noteworthy that the use of bottoming cycles and

vapor heat recovery system requires additional equipments, which will bring additional

cost; however, the cost can be reduced if some components like absorber can be shared

with cycles. If the same absorber is used for top and bottom cycles, the cost of the absorber

per unit size can be reduced. The combined system can provide additional work, which

would increase the overall capacity; on the other hand, the vapor heat recovery system can

increase the cycle efficiencies significantly with an additional heat exchanger.

Dincer and Al-Muslim [109] conducted a thermodynamic analysis for the steam power

plants with reheat. The temperature and pressure values were in the range between 400 and

590 °C, and 100 and 150 bar. The first law and exergy efficiencies for the corresponding

boiler temperature range were approximately 38-43% and 53-58%. Kalina [34] investi-

gated the Kalina cycle performance for a boiler temperature of 532 °C and found that the

bottoming cycle produces 2.7 MWe with a first law and exergy efficiencies of 32.9% and
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Table 3.10 Effective first law and exergy efficiencies for vapor recovery and top and bot-
toming cycle cases

ηI,e f f ηexergy,e f f
T T T+B VHR T T T+B VHR

xstrong 275 °C 300 °C 300 °C 300 °C 275 °C 300 °C 300 °C 300 °C
0.1 26.51 27.48∗ 28.49 30.84 67.17∗ 67.03 69.60 70.68
0.2 24.57 25.33∗∗ 27.14 28.90 62.90 62.25∗∗ 66.81 66.04
0.3 22.54 23.71∗∗ 26.58 25.93 58.38∗ 59.00∗∗ 65.85 60.23
0.4 20.94 22.08 27.35 22.08 54.99 54.51∗∗ 67.22 54.51

∗Configuration: T= Topping cycle, T+B=Topping and Bottoming cycles, VHR=Vapor heat
recovery
∗Partial Superheating, Double Reheater Stream
∗∗Partial Superheating, Single Reheater Stream

70.0%, respectively. Nag and Gupta [55] examined the exergy analysis of the Kalina cycle,

they varied the temperature of ammonia-water mixture at the condenser, and they found

that the cycle efficiency varies between 30-36% for a boiler temperature of 500 °C. The

second law efficiency for the same operating conditions is in the range of 51-60%. In an

another Kalina cycle study, Olsson et al. found the first law and exergy efficiencies as 23%

and 69.7%, respectively for the turbine inlet pressure and temperatures of 110 bar and 494

°C.

As the efficiency results of the Goswami cycle are compared with the Kalina cycle,

it is seen that the results are promising. The Goswami cycle can operate at an effective

exergy efficiency of 60-68% with the boiler temperature range of 200-350 °C. The first

law efficiency of 25-31% can be achievable with the boiler temperatures of 250-350 °C. In

addition, this cycle can utilize low temperature sources such as 60-100 °C to produce work

and cooling simultaneously.
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Chapter 4

Experimental System

The experimental facility used in this research is a redesigned and improved version of

the facility which was used for the first experiments on the combined power/cooling cycle

at Solar Energy and Energy Conversion Laboratory, University of Florida, Gainsville, U.S.

Tamm developed a boiling and absorption loop that demonstrates the vapor generation and

absorption condensation processes, and theoretical model was compared with the experi-

mental results [8]. As Tamm’s setup simulated the turbine expansion with a throttling valve

and a heat exchanger, Martin modified and expanded the experimental setup with a turbine

and a rectifier column to demonstrate the sub-ambient turbine exhaust conditions [7]. After

initial experiments, Martin replaced the separator tank with a smaller size one. In Martin’s

setup, the condensate line in the reflux cooler was connected into the absorber through the

vapor line without measuring the flow rate of condensate in the rectifier column. This was

affecting the calculations across the absorber, also rectifier column suffered from frequent

flooding problems.

Following Martin’s study, Goel increased the rectifier column from 2 inch diameter to

3 inch [9]. In addition, the separator vessel utilized in the setup was found to be quite large,

the separator was replaced with another vessel of smaller size. Then, in order to decrease

the size of the absorber, a new absorber with a micro channel falling film heat exchanger
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Figure 4.1 Photograph of the Goswami cycle experimental setup

was designed and manufactured. The design utilized the unused vertical spacing between

the coolant tubes to form a falling film which increases the mass transfer area. The overall

heat transfer coefficient value was found to increase by about 50% with the introduction of

a screen mesh. This is attributable to the fact that the screen mesh enhances both mixing

and wetting action in the liquid film.

After the last experiments performed by Goel [9], the setup was moved to University

of South Florida, Tampa, U.S. The new setup was mounted on a strut channel frame as

shown in Fig. 4.1. All of the components have been upgraded or replaced except the

separator and the rectifier column. This chapter presents the details of components used in
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the experimental setup, experimental procedures and the test conditions. The first section

gives a detailed description of the components used in the experiments, which is followed

by a section that gives the background of the expander types, and the scroll expander used

for this study.

4.1 Setup Description

A schematic drawing of the current experimental system is shown in Fig. 4.2. The

experimental setup was built in accordance with the conceptual design that was used for

the theoretical simulations. The only difference was that an electrical heater was used

instead of a superheater heat exchanger for practical purposes. The location and labels of

the experimental system instruments are shown in Fig. 4.2, and the specifications of the

instruments are given in Appendix C. Stainless steel tubing, fittings and valves were used

to connect the components. After several tests of the system, piping path was modified

several times to minimize the flow losses in the system. All the tubing and components

were insulated, which reduced the heat transfer losses to the environment. A complete list

of components is provided in Appendix C.

4.1.1 Absorber

The absorber vessel was a flanged container made from a 6 inch steel pipe. The absorber

assembly is shown in Fig. 4.3. The high concentration ammonia vapor at low pressure

flows upward though the absorber. The vapor gets absorbed by the weak solution which

is uniformly distributed around the 1/8 inch diameter micro tubes. The vapor and weak

solution flow in opposite directions and the strong solution forms by rejecting heat to the

coolant fluid flowing inside the micro tubes.
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Figure 4.2 Schematic drawing of experimental system

Goel [9] fabricated the micro tube assembly in the laboratory by oxy-acetylene based

nickel brazing. The unit that was fabricated used a total of 240 tubes. The tube assembly
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Figure 4.3 Photograph of the assembled absorber unit

consisted of 4 columns each having 60 horizontal tubes with their ends brazed to a stainless

steel header of 1/2 inch outer diameter and 0.12 inch wall thickness. During the initial

stages of experiments, leaking problems occurred with this unit. The reason is that nickel

brazing requires special attention and needs a vacuum environment, however, Goel [9] did

not weld the tubes in a vacuum space. The horizontal micro tubes connection at the header

points became brittle due to improper nickel brazing, and vibrations in the setup caused
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failure at the connections which led to leaks. The ammonia entered the cooling water line

and harmed the PVC lines. After several rounds of fixing, it was decided to design and

manufacture a new unit. The designed new unit is shown in Figures 4.4 and 4.5.
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1.31
.31
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36.44
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19.31
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Figure 4.4 Front, right and and 3-D view of the designed micro channel heat exchanger

The new unit has four horizontal passes, each pass has 5 rows and the tubes are con-

nected in a parallel-series arrangement with 14 tubes in parallel. A total of 280 tubes are

used and the coolant tubes used in this experimental study are stainless steel tubing of 1/8

inch outer diameter and 0.016 inch wall thickness. The length of each horizontal tube is

about 9.8 cm. The previous design total surface area was 0.24 m2, but the new design sur-
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Figure 4.5 Side and front view of the designed micro channel heat exchanger with the
dimensions

face area was increased to approximately 0.26 m2. The manufactured new system is shown

in Fig. 4.6.
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Figure 4.6 Manufactured micro channel heat exchanger (left), and connected to the top cap
of the absorber (right)

4.1.2 Pump

Initial tests used an axial multi-stage booster type pump, however the viton type seal

of the pump broke several times due to cavitation problems caused by pumping strong

solution very near saturation. A magnetic coupled external gear pump provides leak free

working conditions due to magnetic coupling of the motor and pump shafts. For this reason

a positive displacement gear pump is used for the experiments and it is shown in Fig. 4.7.

125



www.manaraa.com

A voltage/frequency adjusting AC drive is used to control the speed of the pump. This

provides low speed start up conditions and the pump speed is increased afterwards. A

strainer is at the pump inlet to prevent loose rust pieces from damaging the pump. To

increase the suction head, the suction line is connected to the absorber with a 1 inch tubing.

The piping connecting the outlet of the absorber to the inlet of the pump was also simplified

by reducing the length and the number of bends.

Figure 4.7 Photo of the strong solution pump (left), and the voltage/frequency adjusting
AC drive (right)

4.1.3 Boiler, Recovery and Refrigeration Heat Exchangers

The strong solution leaves the pump, and it passes through a recovery heat exchanger

where it recovers heat from the weak solution returning to the absorber. After exiting the

recovery heat exchanger, the partially boiled mixture enters the boiling heat exchanger. The

turbine exhaust is connected to the refrigeration heat exchanger. All the heat exchangers

are nickel-brazed, stainless steel, vertically stacked plate type heat exchangers. All heat
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exchangers use counter-flow arrangement. The system heat exchangers are shown in Fig.

4.8.

Figure 4.8 Photo of recovery, boiler and refrigeration heat exchangers

4.1.4 Rectifier

The liquid-vapor mixture leaving the boiler is directed to the separator vessel. The sep-

arator is an empty tank, it contains no baffles or special equipment. The schematic drawing

and the photograph of the rectifier component is shown in Fig. 4.9. The rectification col-

umn is a 3 inch schedule 40 pipe of 6 ft length, which is filled with 1/2 inch ceramic Berl

Saddle packings to a length of about 2 ft. The reflux cooler is installed in the remaining

space of 4 ft in the rectification column. The vapor rises out of the top of the separator

and it’s concentration is increased by partial condensation of the vapor in the reflux cooler.

Cooling for the rectifier is provided by the circulation of chilled water, and the same fluid

is used to cool the absorber. The condensate returns back to the separator by gravity. The
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weak liquid drains from the bottom of the separator and is pressure-driven through the

recovery heat exchanger through a throttling valve into the absorber.

Figure 4.9 Schematic drawing (left) and photo (right) of the rectifier that is used in the
experimental setup

4.1.5 Superheater

Superheating is accomplished by using a flexible electric heating tape. The tape is

wrapped around tube that connects to the expander. The heat input to the tape is controlled

by a variable voltage power controller. Depending on the inlet temperature, the superheat-

ing capacity of the tape varies between 1 °C to 8 °C. The superheater tape and the controller

are shown in Fig. 4.10.

4.1.6 Hot Water Side

Hot water is used as the heat source for the experiment. It is heated in a storage electric

water heater and four additional external heaters. Total heat input capacity of the boiler
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Figure 4.10 Photo of the superheater tape (left) and voltage controller (right)

system is 10.5 kW. A temperature/pressure safety valve at the top of the storage tank re-

lieves the water at 100 °C. Therefore, the maximum temperature of the heat source was 99

°C during the experiments. The water heater is controlled by an adjustable thermostat. The

capacity of the heater tank is 80 gallon. The flow rate from the heater system to the cycle

is controlled by a valve and the maximum flow rate of 3 gpm can flow through the cycle.

A photograph of the boiler system is shown in Fig. 4.11.

4.1.7 Coolant Side

The cooling water for the absorber and rectifier is chilled by a vapor-compression wa-

ter chiller. The capacity of the tank is 60 gallon, and two radial pump are used when

the chiller is operating. The first pump circulates the fluid between the storage tank and

the vapor compression chiller heat exchanger. The maximum flow rate of chiller pump is

approximately 5 gpm. The chiller has an internal, adjustable thermostat that controls the

storage tank temperature. The capacity of the chiller is 2.5 tons at 35 °C ambient temper-
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Figure 4.11 Photograph of the boiler system

ature, the minimum temperature that can be stored in the tank is 4-5 °C. A separate radial

pump is used to circulate the fluid from the storage tank through the heat exchangers in the

cycle. A schematic drawing and photograph of the rectifier component is shown in Fig.

4.12. Additional specifications of the chiller and boiler systems are given in Appendix C.
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Figure 4.12 Photograph of the chiller used in the experiments

4.1.8 Data Collection

Most of the data is recorded with a computer-interfaced data collection system. All tem-

peratures are measured with T-type thermocouples and pressures are detected with pressure

transducers. Measurements are saved to a PC through appropriate interface cards and data

acquisition software. Two instrument types are used for measuring flow rates: the vapor

flow into the turbine is measured with a turbine-type flow meter that provides a signal

whose frequency is proportional to flow rate, and the liquid flows of the strong and weak

solutions, heat source fluid, and the coolant are measured with float-type rotameters and

are recorded manually.

The liquid samples of the working fluid are sampled with a syringe and their concentra-

tion is determined with a gas chromatograph (GC). Syringe sampling ports were placed on

the strong and weak solution sides. The previous experimental studies had concluded that
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measuring the vapor concentration using a GC was causing errors due to condensation of

the vapor in the syringe [7–9]. Therefore, vapor concentrations are determined from prop-

erty relations using the locally measured temperature and pressure, and assuming saturated

vapor at the separator and rectifier exits. More details on the equipment used for data col-

lection can be found in Appendix C. Uncertainities related to measurements are also given

in details in the Appendix D.

4.1.9 Experimental Method

For each set of conditions to be tested, a standard test routine was established. The first

step was to start the heat source and heat rejection sub-systems and to allow circulation in

the sub-systems until temperatures were stabilized; then, circulation of the basic strong so-

lution was started. The heat source flow rate was controlled to maintain the desired boiling

temperature of the two phase mixture leaving the boiler. With basic solution flow estab-

lished the weak solution flow from the separator to the absorber was controlled so as to

maintain the desired level of solution in the absorber. The boiler pressure was controlled

by the amount of vapor allowed to expand through the expander. If the vapor flow rate is

increased the boiler pressure is decreased and vice versa. When the expander performance

is tested, vapor flow can be varied only by the expander load. However, in order to be con-

sistent with all the conditions tested, the same electrical load was used for all experiments,

therefore for a given boiler temperature and strong solution concentration, the expander

dictates the vapor flow rate which also controls the boiler pressure. As the solution in the

absorber was heated by absorption condensation of vapor stream in the returning liquid,

the absorber coolant flow was adjusted to maintain the desired absorber pool temperature.
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When the rectifier was active, vapor coolant flow was adjusted to maintain the desired recti-

fier exit temperature. The feedback and adjustments mentioned were performed manually.

The warm-up period of the experiments was approximately 90 minutes, and the stability of

the experiments was observed for an additional 30 minutes after reaching the steady-state

condition. With the system operating at a specified set of conditions, data acquisition could

begin. The data acquisition system recorded measurements at least five minutes, and the

liquid solution samples were taken during this period. The experiment was repeated at least

three times in order to ensure repeatability.

The mixture temperature exiting the boiling heat exchanger was controlled by the flow

and temperature of the heat source fluid. A nominal exit temperature of 85° C was consid-

ered. The basic solution concentration was kept constant, approximately 0.40-0.42, as the

previous experimental studies concluded that basic solution concentrations over 0.45 lead

to larger discrepancy between the experimental and theoretical results [6, 8]. Also, when-

ever the basic solution is increased, the absorber pressure also needs to be increased in

order to eliminate the vapor formation in the basic solution. The vapor was heated with an

electrical resistance heating tape which was wrapped around the pipe. The electrical tape

heating was controlled with a variable transformer. Given the arrangement only a small

amount of superheating was possible, approximately 1-8 °C. The amount of rectification

in the experimental setup was determined by the rectifier exit temperature. It should be

mentioned that the rectifier coil pinch point limitation made it difficult to vary the recti-

fier exit temperature. So, the rectifier exit temperature was controlled by the inlet coolant

temperature or the vapor inlet temperature.
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4.2 Expander

Expanders convert mechanical energy from a fluid at high pressure to shaft work by

expanding to a low pressure. Expanders are possibly the most crucial component in a

power cycle as a small drop in it’s efficiency substantially affects the economics. The heat

input to the cycle must be increased in order to produce the same output work when turbine

efficiency drops. The choice of the expander strongly depends on the operating conditions

and on the size of the facility. Two main types of expanders can be distinguished as the

dynamic (turbo) and displacement (volumetric) types.

Steam turbines are probably one of the most well established machines. Since early

1900s their capacities and sizes have been increasing. At present, 85% of the electricity

generated in the U.S. is from steam turbines [29]. The working temperatures of steam

turbines have increased from 400 °C to 600 °C, and pressures from 100 bar to 280 bar since

1930s. According to [29], specific cost for a turbine and a fossil-fuel plant can decrease

by 30% and 15%, respectively, if the the system capacity is increased from 300 MW to

1200 MW. It is estimated that the capacity of the largest steam turbines will be around

1300-1500 MW in near future [29]. However, the interest in developing steam turbines of

100 kW to a MW has recently grown due to biomass, waste heat and combined system

applications [110].

Inoue et al. [27] presented the results of the development of a simple and compact power

generator driven by waste heat, assuming hot water at a temperature of 80 °C to 90 °C as the

heat source. They did a feasibility study on the characteristics of a low temperature power

cycle and selected Trifluoroethanol, R123 and F245fa as suitable for the cycle to optimize
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the cycle efficiency. A radial turbine was adopted as an expander and it was designed

using an inverse design method, where the 3-D blade geometry for specified blade loading

distribution was numerically obtained. Their experimental results showed that the electrical

power output from their Rankine cycle was 13.5 kW, with a cycle efficiency of 7.0% at 77

°C evaporator temperature and 42 °C condenser temperature. The turbine efficiency was

targeted at 80%, and their result showed that the efficiency was around 60-70% with a speed

of 15000 rpm. Turbines are designed with a clearance between the blade tips and the volute

to allow free rotation; however, leakage at the tips is the primary cause of irreversibility in

the expansion process [110]. The amount that the blade tip clearances can be reduced

is limited because of the centrifugal force applied on the blade and thermal expansion of

the blade. Large scale turbines suffer significantly from radial blade deformation and are

not suited for the reduction of blade tip clearances. On the other hand, when turbine size

is decreased, blade tip clearances do not change significantly, and the tip clearance loss

becomes significant as a percentage of the total loss of output.

Martin and Goswami [6, 7] used a radial turbine for the experiments to validate the

sub-ambient turbine exhaust temperatures. The expander used in the experiments was a

modified single-stage, partial admission turbine originally designed for use in an air-cycle

cooling system. The potential of cooling output from the cycle was verified by the temper-

ature difference between the absorber and expander exit. However, the minimum cooling

temperatures obtained in the experiments were higher than expected, and they explained

the reason as the poor performance of the expander. They discussed that the expander’s

isentropic efficiency was between 20% and 35%. The mechanical power generated by the
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expander was not directly measured, also heat transfer across the expander was accounted

for the low efficiency of the modified turbine. The turbine speed was approximately 20000-

30000 rpm during the experiments.

Typical expander operating speeds range from 1000 to several thousands rpm. Centrifu-

gal force applied on the blade is dependent on blade tip speed, and this is a function of the

rotor rotational speed and the diameter. To investigate whether rotational turbines are ap-

plicable to low scale systems, a preliminary study is conducted and the results are shown at

Table 4.1. Ammonia is used a working fluid, and the turbine inlet pressure and temperature

are 6 bar and 80 °C, respectively and exit pressure is 3 bar. Two cases are investigated, in

the first one turbine exit temperature is 40 °C, as the inlet and exit conditions are specified,

the turbine efficiency can be calculated, which is approximately 75%. In the second case,

the turbine exit temperature is 32 °C, and turbine efficiency is calculated approximately

91%.

The specific speed of a turbine is defined as,

Ns =
ω
√

Q2

(∆hideal)
3/4 (4.1)

where Q2 is the volumetric flow rate through the turbine at rotor exit, ω (rad/s) turbine

rotational speed, ∆hideal (J/kg) ideal turbine work. The specific speed for a radial turbine is

at optimum for a radial turbine at a value of 0.6 [110,111]. The velocity ratio, U/Co, where

U is the rotor tip speed and Co is the velocity based on the ideal enthalpy drop of turbine as

Co = (∆hideal)
1/2, optimizes the turbine efficiency when it is equal to 0.7.
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Table 4.1 Turbine parametric analysis for a given specific speed of 0.6
Rotor (S: Speed, D:Diameter, MF: Mass flow)

Turbine Exit Temperature=40 °C Turbine Exit Temperature=32 °C
Tip speed=197.8 m/s Tip speed=219.3 m/s

Efficiency=~75% Efficiency=~91%
Power (kW) S (rpmx103) D (mm) MF (g/s) S (rpmx103) D (mm) MF (g/s)

1 345.3 10.9 12.5 453.4 9.2 10.2
5 154.4 24.5 62.6 202.9 20.6 50.9
10 109.2 34.6 125.3 143.5 29.2 101.9
25 69.1 54.7 313.2 90.7 46.2 254.7

100 34.5 109.4 1252.7 45.3 92.3 1018.7
500 15.4 244.6 6263.6 20.3 206.5 5093.6

1000 10.9 345.9 12527.2 14.4 292.0 10187.3

As it is seen in Table 4.1, when the output of the turbine is reduced from a MW scale to

a kW scale, the turbine speed needs to be increased from 10 thousand rpm to 345 thousand

rpm, which is significant. Two different turbine efficiencies are analyzed, when the effi-

ciency goes up from 75% to 91%, the rotational speed needs to be increased approximately

from 30% to 40%. It’s clear from Table 4.1 that a rotary turbine design at a low power

capacity is a challenging task. For ammonia, with high rotor tip speeds, the calculations

resulted in high rotor speeds with small diameters, which will also cause impractically

small inlet flow passages with enlarged rotor diameters for small scale systems. It is well

known that designs for heavier organic fluids result in efficient geometries at small sizes, at

reasonable shaft speeds and inlet flow areas even with small diameter rotors [112, 113].

Badr [114] stated that sealing is one of the important factors for the high speed turbines,

and summarized the major problems of using expanders in Rankine engine of less than 50

kW output, as:

• Very low efficiencies
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• High production costs, especially for multiple rotor expansion systems,

• The possibility of a high moisture content in the expanding vapor, which can result

in rapid erosion of the turbine blades.

Efficiencies of turbines diminish when they operate at off-design conditions, i.e. rotational

speeds other than the design-point speed, and on part loads. Also, excessive mechanical

stresses and sealing problems may occur if a turbine is required to run at very high speeds.

However, to maintain the rotational speed of a turbine at the design point, a complicated

and expensive automatic speed control system is required. Mobarek et al. [115] suggested

a specially-designed, 10 stage, radial outflow turbine for a solar Rankine cycle system

providing power outputs in the range of 100 kW; their results showed an efficiency of 71%

(at 8300 rpm and 100 kW output) and a rotor diameter of 0.52 m .

Comfort [116] developed and tested a two phase expander which uses a low quality

steam-water mixture as the working fluid. The expander efficiency was 23% for a single-

nozzle test, and for full admission performance, efficiency was measured between 38%

to 41%. The inefficiencies in the turbine came from the droplets, therefore, reducing the

droplet size is expected to increase the efficiency of the expander. Takeshita et al. [92]

developed an ammonia-water mixture (AWM) turbine system to enhance the overall cycle

efficiency of a “trianary turbine cycle system” which is composed of a gas turbine and a

steam turbine and the AWM turbine system. The turbine type used for their experimental

results is an axial impulse type Curtis turbine with 40% efficiency, inlet absolute pressure

was 15 bar and the output capacity was 60 kW at 3000 rpm.
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Positive displacement expanders are more suited for small scale systems when the tip

losses are considered for rotating expanders [110, 111]. Positive-displacement machines

such as reciprocating and rotary piston, rotary vane, and screw operate by expanding a

fixed volume of fluid per oscillation. Balje [111] showed the performance characteris-

tics of various expander types and it was shown that throughout the low specific-speed

regime, positive-displacement expanders have greater efficiencies than single-stage tur-

bines. Rotary positive-displacement expanders achieve about the same isentropic efficien-

cies as single-stage turbines at smaller specific diameters, and consequently allow rotor-

tip speeds which are only one-quarter to one-third of the values required for single stage

turbines. Besides, lower operational pressure ratios are needed for positive-displacement

machines. However, reciprocating machines have some drawbacks;

• Torque pulsation is a common phenomenon due to the inherent discontinuity associ-

ated with the finite number of pistons or lobes and fixed displacement,

• Reliability is also an issue with positive-displacement machines because of a greater

number of moving parts with the associated inherent balancing problems and in the

case of pistons, a lubrication system to reduce leakage encountered in the gap be-

tween the moving seals and volute,

• Poor breathing characteristics due to the high fluid-friction losses across the valve

systems,

• Lubrication difficulties, when operating with steam as the working medium

• High manufacturing costs.
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As an example, Ibaraki et al. [117] applied to recover and reuse of waste heat from an

automobile engine with a rotary piston type expander. They stated that the heat discarded

from the engine accounts for at least 40% of the heat generated by the fuel. They selected

a volumetric type expander with piston that can produce an output even from a small flow

rate. The expander geometric expansion ratio and maximum speed were 14.7 and 3000

rpm, respectively. The calculated efficiency of the expander was 13% at it’s peak value

when the input heat rate was 23 kW. The theoretical efficiency calculated from the thermal

properties of steam was approximately 25%. The problem encountered by Ibaraki et al.

[117] was sealing; they mentioned the main losses of the expander were steam leakage

because of sealing problem, friction losses of pistons (7 cylinder expander), and heat loss

to the environment.

Rotary vane expanders possess high tolerances for a wide range of vapor qualities of

the working fluid, also provide some additional advantages such as self-starting under load

and smooth torque production. Badr et al. [118] measured the experimental performance of

rotary vane expander using various organic fluids and steam as the working fluid, and found

the isentropic efficiency of the expander to be in the range of 60% to 73% for the following

operating condition ranges: rotational speed of 2000-2500 rpm, inlet pressure of 4-7 bar

and inlet temperature of 102.2-131.5 °C, and working fluid as R-113. Some difficulties

regarding the operation were noticed by Badr et al. [118], such as increased blade/stator

friction caused consequent reduction of power output, and likelihood of mechanical failure

of the blade.
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Another interesting device is the Wankel engine, which has been the subject of re-

search and development for many years, primarily within the automotive industry. Wade et

al. [119] tested a Wankel type expander where high pressure steam is used as the working

fluid (27.6-65 bar, 231-410 °C). Their work suggested that the device reached mechanical

efficiencies in the range 60 to 80%, though significant hydrodynamic losses were observed

during the experiments. Badr et al. [114] indicated that Wankel engines encounters lubri-

cation problems. Similar to the rotary vane expander, the major lubrication problem in a

Wankel engine was associated with sealing.

Helical screw expanders have been widely used as the expansion devices in Rankine

cycle plants, especially for solar-powered applications. Some research has been done on

the performance of screw expanders; Merigoux and Pocard [120] worked on a screw ex-

pander with oil injection, which was the prime mover for a R-113 Rankine system in the

5-50 kW power range, with an isentropic efficiency of 70% when running at a speed of

4200 rpm. Lorenzo et al. [121] concluded that screw machines offered the advantages of

simpler design and higher efficiencies in the 15-200 kW range while operating at 25% of

the rotational speeds of turbines with the same power outputs. Steidel et al. [122] presented

another screw type expander’s performance which showed that for a rotor diameter of 0.13

m and a device length of 0.166 m, a maximum isentropic efficiency of approximately 40%

was obtained at 9043 rpm, when employing steam of 32.4% quality as the working fluid

at an inlet pressure of 7.8 bar and an operating pressure ratio of 7.1. In an another helical

screw study [123], single-stage expansion of self-pumped geothermal fluids from reser-

voirs at 176 °C to 400 °C gave engine efficiencies in the range from 43.1% to 57.3%. In
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this study, the rotor diameters ranged from 3.2 m to 12.7 m for a range of outputs of 5 MW

to 40 MW. For a two stage expansion, with a 300 °C reservoir, the engine efficiency reached

62.3% and the diameter of the larger rotor was reduced by 21%. It was suggested that ro-

tor diameters can be held to more reasonable sizes by using the expander in combination

with a vapor turbine. In a different study [124], a 1 MW geothermal electric power plant

that featured a helical screw expander was produced and then tested with a demonstrated

average performance of approximately 45% expander efficiency over a wide range of test

conditions in non condensing operation on two-phase geothermal fluids.

The rotational speeds of the screw expanders are higher than the recommended oper-

ational speeds of some of the driven equipment, so that reduction gear boxes and speed-

control equipment might be required. Also, helical-screw expanders need a relatively high

level of technology in their production. Lubrication of helical-screw machines is achieved

principally by employing a working fluid/oil mixture as the lubricant between rotors, as

well as the rotors and the casing. The lubrication problem in screw expanders is not as

severe as in Wankel engines due to the relatively small, typically allowed running clear-

ances (between the rotors and the casing) which do not lead to significant reductions in the

machine efficiencies.

Tesla type [125] turbomachine has a rotor which is composed of flat parallel co-rotating

disks spaced along a shaft instead. The working fluid flows between the disks, which results

in momentum exchange between the fluid and the disks and hence shaft torque and power.

While rotor efficiencies can be very high in this type of turbine, there are inherent losses

in the fluid flows entering and exiting the rotor. As a turbine, the nozzles are necessarily
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long and inefficient. Rice (1994) surveyed the literature for the Tesla turbine use with

steam, gas and water, and it was stated that Tesla turbine efficiencies have been low and

the machine sizes large per unit of power delivered. Rice (1994) concluded that Tesla type

turbine probably cannot prove competitive in an application in which more conventional

machines have adequate efficiency and performance. This type of turbomachinery can

be applied to the conditions where shaft power is small, or the fluid is very viscous fluid

or non-Newtonian. A study by Ke and Hashimoto [126] investigated the performance of

Tesla turbine for cryogenic applications. Instead of using co-rotating disks, they used an

expansion wheel which is a cylindiral shaft with shallow spiral grooves on its surface. They

showed that adiabatic efficiencies of 41.5% can be reached at 20 K by the viscous expander

with a 6.2 W of output power at 70,000 rpm, however experimental study is needed to verify

the bearing stability.

4.2.1 Scroll Expander

Scroll compressors have been widely adopted by the HVAC industry because of the

advantages they offer, including: simple design (i.e. fewer moving parts), low friction and

low torque pulsations. High precision technologies are required to manufacture scrolls.

For this reason, scroll devices emerged in the late 1980s with the development of computer

guided manufacturing machines. Literature suggests the potential use of a scroll expanders

modified from scroll compressors, as high efficiency expanders [10, 11].

A scroll device consists of two identical spiral elements assembled with a 180° phase

difference as shown in Fig. 4.13. Two, spiral-shaped members fit together, forming cres-

cent shaped gas pockets. During operation, one member remains stationary, while the
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second orbits relative to the first. This configuration allows the moving scroll to rotate in

an orbiting motion within the fixed scroll. The phase difference between the two scrolls is

accomplished by using an anti-rotation device, such as an Oldham coupling. The expander

inlet is at the center of the scrolls. The orbiting motion creates a series of gas pockets

traveling between the two scrolls. On the inner portion of the scrolls, the pockets draw

in the working fluid, from where the fluid progressively moves to the outer pockets of the

scrolls. As the fluid moves through the increasingly larger outer pockets, the temperature

and pressure decrease to the desired discharge pressure.

Another advantage of this device is that it does not require inlet or exhaust valves which

reduces noise and improves the durability of the unit; furthermore the relative rolling mo-

tion of the contact points offers less resistance than sliding friction. Additionally, the rolling

contacts provide a seal such that large volumes of oil used as a sealant are not required and

leakage is reduced [127]. The scroll expander can start under any system load without

any start components. Also current scroll devices have a compliant design which provides

both axial and radial compliance between scroll members, and this increases the life of

the scrolls. Axial compliance allows the scroll to remain in continuous contact in all nor-

mal operating conditions, ensuring minimal leakage without the use of tip seals. Radial

compliance allows the scroll members to separate sideways so debris can pass through,

substantially improving durability and reliability [127].

Quoilin et al. [113] carried an experimental study which tested the performance of

a scroll expander. The working fluid was refrigerant R-123. The scroll expander was

originally an oil free open-drive scroll compressor, adapted to operate in reverse. The
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Figure 4.13 Scroll geometry and 3D views of scrolls

expander rotational speed was between 1771 rpm and 2660 rpm. An expander isentropic

efficiencies of 42% to 68% were reached for the pressure ratios of 2.7-5.4.

It is a well-known fact that a reduction of the vehicle weight reduction and improve-

ment of engine thermal efficiency are important for the improvement of vehicle fuel econ-

omy [128]. Oomori and Ogino [128] conducted research on the application of Rankine

bottoming system to passenger cars, with an attempt to combine the evaporative engine

cooling and Rankine bottoming system to simplify the overall waste heat recovery system.

The expander used in their experiments was a scroll type expander with an inlet volume of

40 cc and an expansion ratio of 2. They varied the expander speed between 800 rpm and

2200 rpm, and the pressure ratio between 1.2 and 3.2. They found the maximum efficiency

of the expander as 50%, operating speed at a speed of 1100-1500 rpm with the vapor inlet

temperature of 70 °C to 100 °C. The efficiency of the expander began to drop as the ro-

tational speed became lower than 1000 rpm, which was probably due to the deterioration
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of sealing performance between the rotor and the housing which resulted in leakage of the

working fluid.

Ammonia offers particular challenges to the design or selection of any expander, such

as corrosiveness. Ammonia is corrosive to copper and copper containing alloys present in

the bearings and motor stators of hermetically sealed compressors. Additionally, ammonia

is a small molecule (17 g/mole) and thus has relatively low density compared to hydro-

fluorocarbons used for refrigeration, such as, R134-A (102.0 g/mol), R245-FA (168.5

g/mole), R404-A (97.6 g/mole). Therefore, it is more prone to leak compared to hydro-

fluorocarbon based refrigerants.

The present experimental study was aimed to predict the scroll expander performance

with ammonia vapor which is not available in the literature. Instead of using a custom

scroll expander design, an off-the-shelf open drive unit used in the truck refrigeration units

was bought and modified. Custom design and fabrication of scroll expander can be costly,

however, its performance and feasibility in the combined power and cooling cycle will

provide a basis for further research and design to improve the scroll expanders and other

small scale power generation systems.

The scroll unit selected for the experimental study is shown in Fig. 4.14. The open

drive unit is modified and the copper based materials used in the unit were replaced by

ammonia compatible elements. A generator was coupled with the scroll expander in order

to measure the power output directly from the experimental setup. The scroll shaft was

connected to the generator by a pulley system and the electrical output of the generator was

measured by voltage and current transducers. The loading of the system is done by electric

146



www.manaraa.com

Figure 4.14 Modified scroll expander used for experimental testing

resistance light bulbs as shown in the bottom of the Fig. 4.14. One drawback of using a

scroll device for an absorption based cycle is that oil can be carried to the absorber and mix

with the strong solution ammonia-water mixture by the vapor flow. Scroll devices require

oil to cool and seal between the orbiting and stationary scrolls as explained before. In order

to maintain the oil lubrication, three devices are generally used: an oil separator, an oil

level regulator, and oil reservoir. Other elements, such as oil strainers may be needed to

complete the system. In a closed refrigeration system, oil is swept back to the compressor

by the flow of refrigerant. The velocity in the evaporator tubes is usually sufficient to carry

the oil back. However, when the scroll device is used as an expander for an absorption

based system, without the oil separator and filters, some amount of oil is mixed with the

working fluid.
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Table 4.2 Scroll expander details
Volumetric ratio 4.20
Outlet volume (cm3/rev) 98.16
Inlet volume (cm3/rev) 23.37
Pulley diameter (cm) 15.11
Generator pulley diameter (cm) 10.03

The expander was connected to the inlet vapor tubing by using 3/8” O.D. stainless steel

tubing, and the discharge port was 1/2” O.D. Due to the heat transfer losses at the flexible

hoses which connect the scroll expander unit to the cycle, additional thermocouples were

added at the inlet and exit tubing of the expander. Some details of the expander are given

in Table 4.2. Additional details of the generator are given in Table C.5.
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Chapter 5

Experimental Results

The experimental setup was designed to explore the operating issues with the power-

cooling cycle and its components. Initial experiments were done by simulating the ex-

pansion process of the turbine by using a throttling valve and cooling the vapor after the

valve. These initial experiments confirmed the operating trends of vapor production and

concentration variation in the cycle. The experiments with the scroll expander were per-

formed under three different conditions: the vapor exiting from the rectifier is saturated

vapor (SV), superheated vapor (SHV), and rectified and superheated vapor (RSHV). These

conditions will be explained in detail in the following subsections.

Martin’s [7] experimental work showed the expected trend of an increase in vapor

flow with temperature and concentration, which was also shown theoretically in Chapter 3.

Therefore boiling temperature and ammonia concentration in the strong solution was not

varied in this work; the ammonia concentration was kept in a range of 0.40-0.43. As most

of the experimental components were upgraded or modified from the earlier setup, initial

experiments were performed to test the vapor production and system stability. Therefore,

experiments without the expander will be discussed first to show the system efficiency in

vapor production. Then, experiments with the expander will be discussed in this chapter.
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Table 5.1 Averaged conditions for experiments without expander
Temperature °C
Absorber 39.3±1.0
Separator inlet 88.9±1.0
Separator exit-weak solution 86.5±1.0
Rectifier exit-vapor 85.4±1.0
Pressure bar
Absorber 2.87±0.02
Mass flow rate g/s
Strong solution 22.04±3.85
Vapor 2.82±0.04
Ammonia concentration kg NH3/kg solution
Strong solution concentration 0.41±0.02

5.1 Experiments without the Expander

Initial experiments were performed to find out the stability conditions, including vapor

production and ammonia concentration variation in the vapor and weak solution return

line. Averaged conditions for the experiments are given in Table 5.1. The temperatures of

the mixture entering the separator, weak solution leaving the separator, vapor exiting the

rectifier and mixture in the absorber are plotted in Fig. 5.1 as a function of boiler pressure.

As it is shown in the figure, the absorber temperature is constant for different boiler

temperature cases. Due to heat transfer losses, there is approximately 3 °C difference

between the mixture leaving the boiler heat exchanger and vapor and weak solution mixture

temperatures, as shown in detail in Fig. 5.2. Temparatures of the vapor leaving the rectifier

column and the weak solution mixture are very close, which defines the boiler temperature

to verify the experimental results. In the theoretical simulations, the temperature across

the boiler and separator components were assumed as constant, heat transfer losses are

neglected. In order to evaluate the experimental performance of the cycle, several data
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Figure 5.1 Temperature values showing the system stability during the experiments

from the experimental cycle were transferred to the simulation code. The weak solution

temperature was assumed as the boiler temperature as uniform temperature conditions were

assumed in the theoretical study.

5.1.1 Vapor Production with the Variation in Boiler Pressure

The boiling pressure was one of the most important parameter as it determines the vapor

production for the boiler temperature and strong solution concentration in the separator.

It was the first parameter that was considered as a system variable and its effect on the

vapor production is shown in Fig. 5.3. As pressure decreases more vapor is formed as

seen in Fig. 5.3. The value of the vapor mass flow fraction (the mass flow rate ratio of

the vapor to the basic solution) error bars increases while the pressure decreases. At a

lower boiler pressure, more vapor forms and the boiler heat input increases. For the cases
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Figure 5.2 Temperature of various points in the cycle showing the system stability during
the experiments

where heat input requirement was higher than the boiler heaters capacity, the flow rate of

the strong solution was decreased instead of increasing the heat input to the cycle. This

caused some instability and fluctuations in both vapor and liquid flow rates, and for this

reason, the error bars related to the lower pressure vapor mass flow fraction are larger as

compared to the high pressure cases. To obtain Fig. 5.3 throttling valve was used to adjust

the vapor flow rate leaving the separator, when larger amounts of vapor was allowed to

expand through the valve, the boiler pressure decreased. As it is seen from the figure,

the discrepancy between the experimental results and the simulated results increases with

the boiler pressure. The measured vapor flow rate is consistently lower than that expected

from the equilibrium model indicating some inefficiencies in the vapor production process.

After the vapor-liquid mixture enters the separator, the vapor is separated from the liquid
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by gravity, however, even though the vessel was insulated, there are external losses, and the

vapor condenses on the separator vessel wall. The value of the vapor mass flow fraction is

reduced because of this additional condensation on the vessel wall.

Simulated vapor mass flow fraction
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Figure 5.3 The effect of boiler pressure on experimental and simulation values of vapor
mass fraction

5.1.2 Ammonia Concentrations with the Variation in Boiler Pressure

The concentrations of the strong solution, weak solution and vapor are shown in Fig.

5.4. As discussed in the previous chapter, the vapor concentration is not measured, it is

assumed that the vapor leaving the rectifier is at saturated vapor condition, and the dew

concentration value for the corresponding pressure and temperature is assumed for the va-

por concentration. The vapor condensation on the separator vessel wall raises the vapor

temperature and the ammonia mass fraction in the vapor region as discussed above, this

raises the ammonia mass fraction in the weak solution as well. Water is more prone to
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condensation than ammonia, however the condensate liquid is still very high in ammonia

concentration as shown in Fig. 5.4. The incomplete liquid and vapor separation contributes

to the higher ammonia concentration in the vapor and weak solution than expected. As a

result, it can be concluded that there is a some degree of inefficiency related to the vapor

production, the vapor mass flow rate ratio and the concentration results shown in Figures

5.3 and 5.4, this causes lower vapor production rates, higher vapor and weak solution con-

centrations than expected. The discrepancy in the concentration values will be shown in

the next section by a mass balance across the separator.
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Figure 5.4 The effect of boiler pressure on experimental and simulation values of ammonia
concentration

5.2 Experiments with the Expander

Experiments with the expander were performed for three different cases. Averaged

conditions for the experiments are given in Table 5.2. The tubing that connects the rectifier
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and turbine inlet causes a temperature drop, even though the tubing was insulated. The

first case, SV, examines the effect of this condition, both pressure and temperature drops

through this tubing, so the turbine inlet condition is assumed as saturated vapor. In the

second case, SHV, the vapor entering the turbine is heated until its temperature reaches

the temperature at the rectifier exit, so the heat loss between the rectifier and the turbine

connection tubing is compensated. Final case, RSHV, is similar to SHV except that the

rectifier is in operation in this case. The rectified vapor is reheated before entering the

turbine to make up for the heat loss in the piping between the rectifier and the turbine. The

vapor production and concentration of the experiments are shown first for each case, and

then the performance of the expander, work production and generator output will be shown

lastly.

5.2.1 Vapor Mass Flow Fraction

Vapor mass fraction for the saturated (SV), superheated (SHV) and rectified and super-

heated (RSHV) cases are shown in Figures 5.5-5.7. As expected, there was a discrepancy

between the simulated vapor mass fraction and the experimental values.

5.2.2 Ammonia Concentrations in the Liquid Solutions and Vapor

The concentration of strong solution, weak solution and vapor for the saturated (SV),

superheated (SHV) and rectified and superheated (RSHV) cases are shown in Figures 5.8-

5.10. Mass balance calculation across the separator was used to calculate the expected

vapor concentrations. As discussed above, the assumption of saturated vapor condition

to calculate the vapor concentration can be misleading when no rectifier is used. For the

rectification case, the results agree as shown in Fig. 5.10. As shown in the figures, the error
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Table 5.2 Averaged conditions for the tests with the expander
SV SHV RSHV

Temperature °C
Absorber 41.5±1.0 40.4±1.0 39.7±1.0
Separator inlet 84.7±1.0 86.8±1.0 89.0±1.0
Separator exit-weak sol. 82.1±1.0 83.9±1.0 84.9±1.0
Rectifier exit-vapor 81.8±1.0 83.9±1.0 55.0±1.0
Expander inlet 76.5±1.0 85.49±1.0 54.6±1.0

58.4±1.0
61.0±1.0

Expander exit 63.3±1.0 68.8±1.0 43.7±1.0
44.6±1.0
46.5±1.0

Pressure bar
Absorber 3.01±0.01 2.96±0.01 2.83±0.018
Expander inlet 6.03±0.02 6.13±0.02 5.11±0.02
Expander exit 3.85±0.01 3.97±0.01 3.35±0.01
Mass Flow Rate g/s
Strong solution 21.81±3.81 19.47±3.81 16.55±3.86
Vapor 3.21±0.04 3.24±0.04 2.58±0.04
Ammonia concentration kg NH3/kg solution
Strong solution 0.43±0.02 0.43±0.02 0.40±0.02

bars related to xvapor were very high compared to saturated vapor assumption value. This

is due to the error related to the flow measurements of strong solution and weak solution.

The uncertainty calculations are given in Appendix D.

5.2.3 Vapor Enthalpy

The vapor enthalpies for different concentration values are shown in Fig. 5.11, since the

vapor concentration is very important to calculate the expander performance. The concen-

tration calculation and the assumptions were discussed before, and it was shown that there

was a significant discrepancy between the calculations based on saturated vapor assumption

and mass balance.
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Figure 5.5 Measured and simulation values of vapor mass flow fraction for SV case
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Figure 5.6 Measured and simulation values of vapor mass flow fraction for SHV case

157



www.manaraa.com

Simulated vapor mass flow fraction

Va
po

r M
as

s F
lo

w
 F

ra
ct

io
n 

(%
)

0

5

10

15

20

25

30

Boiler Pressure (bar)
5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6

Rectified and Superheated Vapor (RSHV)

Figure 5.7 Measured and simulation values of vapor mass flow fraction for RSHV case
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Figure 5.8 Measured and simulation values of ammonia concentration for SV case
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Figure 5.9 Measured and simulation values of ammonia concentration for SHV case
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Figure 5.10 Measured and simulation values of ammonia concentration for RSHV case
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Figure 5.11 Enthalpy values for different vapor concentration

The vapor enthalpies calculated by the saturated vapor and mass balance assumptions

for the saturated (SV), superheated (SHV) and rectified and superheated (RSHV) cases are

shown in Figures 5.12-5.14.

As shown in Fig. 5.15, when the rectifier temperature is below 66 °C, the concentration

value from the saturated vapor assumption is bound between 0.98 and 1.0. It was shown

in Fig. 5.14 that the expander enthalpy drop is not affected significantly when the vapor

concentration is above 0.98.

5.2.4 Expander Performance

Experimental measurements of the expander performance for all cases are shown in

Fig. 5.16. As discussed above, the assumption of saturated vapor condition for the vapor

concentration calculation leads to some difficulties for the thermodynamic performance
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Figure 5.12 Effect of vapor concentration on enthalpy drop for SV case
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Figure 5.13 Effect of vapor concentration on enthalpy drop for SHV case
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Figure 5.14 Effect of vapor concentration on enthalpy drop for RSHV case
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calculation of the expander. Specifically, the turbine efficiency values were higher than the

theoretical limit of 100% for some of the saturated and superheated experiments. It was

concluded that the efficiency calculations based on thermodynamic measurements seem to

be very sensitive to the inlet conditions. Therefore, to calculate the concentration of vapor

at the turbine inlet, mass balance calculations were used for the SV and SHV cases, and

saturated vapor condition was assumed at the rectifier exit for the RHSV case. It is shown

in Fig. 5.16 that the expander performance was between 40-50% for the SHV case, the

expander operates poorly for the SV case. The rectification case also shows the effect of

superheating on expander efficiency. As superheating was performed in three steps, the last

two steps (3 °C and 6 °C of superheating) lies on the 40% expander efficiency line.
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Figure 5.16 Experimental measurement of the expander performance for all cases
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The conditions for all the experiments are averaged and the expander efficiency was

extrapolated for low turbine inlet temperatures as shown in Fig. 5.17. It is clear from

the figure that 30-35 °C turbine inlet conditions are required to reach sub-ambient tem-

peratures. Another way to reach these temperatures is to lower the absorber pressure and

temperature, which is also shown with the dashed lines in Fig. 5.17. It was mentioned

that the rectifier coil pinch point limitation caused problems for varying the rectifier exit

temperature. Therefore, in order to reach low rectifier exit temperatures, the cooling fluid

temperature needs to be decreased from 20 °C or the vapor temperature entering the sepa-

rator column should be decreased. The cooling fluid temperature decreased to 10 °C, and

the absorber temperature to be around 25 °C, unfortunately the temperature of the cooling

fluid increased during the experiment. The chiller cooling capacity was not enough and it

should be increased in order to decrease the absorber temperature. Another option might be

decreasing the flowrate of the working fluid; however, the system is more prone to become

unstable. Expander rotational speed and calculated work output for all cases are also shown

in Fig. 5.18.

5.2.5 Generator Performance

Calculated work output of the cycle and the generator measured output results for all the

cases are shown in Fig. 5.19. As shown in the figure, the work output is always higher than

the generator output. The discrepancy between the results is higher at the higher turbine

inlet temperatures.

Generator rotational speed and output estimation for all cases are shown in Fig. 5.20.

The generator output estimation was done with an AC motor and speed controller, the speed
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Figure 5.17 Expected performance of the expander for low expander temperature inlet
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Figure 5.18 Expander rotational speed and calculated work output for all cases
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Figure 5.19 Expander calculated work output and generator output for all cases

of the generator was changed and expected speed range was covered. The generator and

the AC motor was coupled with a pulley, and pulleys with different diameters were used

to find out the generator output at different speeds. The generator characteristic is derived

from these tests and shown in Fig. 5.20. The experimental results with the ammonia-water

tests lie within the range of the performance estimation of the generator.

A demonstration of the important outputs of the Goswami cycle cycle has been pro-

vided. The experimental results of vapor production has been verified by the expected

trends to some degree, due to heat transfer losses in the separator vessel. The scroll ex-

pander performance has been measured between 30-50%, the expander performs better

when the vapor is superheated. The small scale of the experimental cycle affected the test-

ing conditions and outputs, if the components capacities are increased and system is scaled

166



www.manaraa.com

Generator test data with motor
Welectricity

Estimate performance of generator

Po
w

er
 (W

)

0

20

40

60

80

100

120

140

160

Generator Rotational Speed (rpm)
600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700

Figure 5.20 Generator rotational speed and output estimation for all cases

to higher outputs, the losses would be lower and the effect on the system would be smaller

than what is observed by the current experimental setup.
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Chapter 6

Summary and Conclusions

The combined power/cooling cycle was studied theoretically and experimentally. A

thermodynamic model was developed to conduct the performance analysis of the cycle.

Using this model, the performance of the cycle was studied for a range of boiler pressures,

ammonia concentrations, and isentropic turbine efficiencies, to find out the sensitivities

of net work, amount of cooling and effective efficiencies. The thermodynamic analysis

covered a broad range of boiler temperatures from 85 °C to 350 °C.

The combined cycle experimental setup was developed on a moveable strut-channel

frame. A boiler and a condenser unit were also built to simulate the experiments in a

laboratory environment. Based on the literature search, scroll type device was chosen as

the expander. A scroll type device was modified to use it with high concentration ammonia.

The experiments were accomplished to test the performance of the scroll expander at a

boiler temperature of 85 °C.

6.1 Summary of Results

6.1.1 Theoretical Studies

The operating parameters that affect the cycle performance for low-grade heat sources

were analyzed. It was shown that the cycle has maxima points for the efficiencies, work
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and cooling outputs at a given boiler temperature. For the low temperature heat sources

below 100 °C, the conclusions are as follows.

• The effect of rectification cooling source (external and internal) on the cycle output

was investigated, and it was found that an internal rectification cooling source al-

ways produces higher efficiencies. However, no significant difference was observed

between the external and internal cooling source for rectification at ammonia mass

fractions higher than 0.35.

• The vapor concentration has a significant effect on the turbine exit temperature. The

higher the vapor concentration at the turbine inlet, the lower the turbine exit temper-

ature, which increases the cooling output from the cycle.

• The cooling output is always at a maximum when rectification is done and no super-

heater is used, therefore, installation of a rectifier column is necessary to maximize

the refrigeration output. Irrespective of the turbine efficiency, higher rectification is

required to produce higher cooling, which on the other hand reduces the work output

and overall efficiency.

• Cooling output is limited at low pressures by higher turbine exhaust temperatures

and bounded at higher pressures by the low production of vapor.

• When ammonia vapor is superheated after the rectification process, the cycle effi-

ciencies increase but cooling output decreases. Superheating enhances the power

output but the difference is not significant at high pressure ratios.
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• If the cycle is used for maximum power, it is not necessary to use a rectifier or a

superheater, which leads to a reduction in the initial costs.

• When ammonia mass fraction in the basic solution increases, ammonia vapor mass

flow rate leaving the boiler increases. This leads to a higher net work output and

cooling.

The theoretical study was extended to cover low to mid-grade heat sources, from 100 °C

to 350 °C. It was shown that the cycle operates poorly above 150 °C when a single turbine

stage is used. The turbine exit quality limits the exit temperature and pressure. In order to

utilize the heat sources above 150 °C, multi turbine stages were used and compared with the

single stage results. The results showed using multi stage turbines the Goswami cycle could

operate at an effective exergy efficiency of 60% and higher for the boiler temperature range

of 200-350 °C. The first law efficiency of 25-31% is possible with the boiler temperatures

of 250-350 °C. The efficiency results of the Goswami cycle were compared with the other

combined cycles found in the literature, it was seen that the Goswami cycle has better

efficiencies.

• The work output of the Goswami cycle increases with the heat source temperature

for the multi-stage expansion case, however it follows a reverse path for the single

stage turbine for the heat source temperatures between 200-350 °C.

• The effect of using multi stage turbine is critical above the heat source temperatures

of 175 °C.
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• The maximum net work occurs at the lowest strong solution for the multi-stage ex-

pansion.

• The effective first law efficiency values for multiple stage case is significantly higher

than the single stage case for heat source temperature above 150 °C.

• The first law efficiency of 25-31% is possible with the boiler temperatures of 250-

350 °C. The cycle can operate at an effective exergy efficiency of 60-68% with the

boiler temperature range of 200-350 °C.

• The exergy destruction increases with increasing boiler temperature. The main sources

of exergy destruction are heat exchangers, absorber, and turbine stages. For most of

the cases, the dominant exergy destruction source is the absorber/condenser.

6.1.2 Experimental Studies

An experimental study was conducted to verify the predicted trends and to test the

performance of the scroll type expander. The experimental results of vapor production

were verified by the expected trends to some degree, due to heat transfer losses in the

separator vessel.

The measured vapor flow rate is lower than that expected from the theoretical model in-

dicating some inefficiency in the vapor production process. After the vapor-liquid mixture

enters the separator, the vapor is separated from the liquid by gravity, however, even though

the vessel was insulated, there are external losses, and the vapor condenses on the separator

vessel wall. The vapor mass flow fraction is reduced because of this additional conden-

sation on the vessel wall. The vapor condensation on the separator vessel wall raises the
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vapor temperature and the ammonia mass fraction in the vapor region as discussed above,

this raises the ammonia mass fraction in the weak solution as well.

The scroll expander performance has been measured between 30-50%; the expander

performs better when the vapor is superheated. The small scale of the experimental cycle

affected the testing conditions and outputs. If the system size is increased, the losses would

be lower, and the effect on the system would be smaller.

6.2 Future Work

The potential of the power and cooling cycle as an alternative to conventional fossil fuel

technologies was acknowledged by the experimental work of this dissertation. However,

further studies are necessary to realize this potential and to produce a complete demonstra-

tion of the proposed cycle.

More work is needed to better understand the performance of a power plant built on

the combined power and cooling cycle. While some work is already in progress, some rec-

ommendations to extend the results of this work are presented below. The suggestions are

listed and a discussion elaborating on some of these topics follows. The recommendations

that should be considered for further research in this area are categorized in three sections;

theoretical studies, experimental setup, scale of the cycle, and the economical aspect.

6.2.1 Theoretical Studies

All the theoretical work done so far on the cycle has been based on the basis of simula-

tion models. The practical efficiency values of the components were assumed and simula-

tions have been performed. This simulation approach is useful to find out the strengths and

weaknesses of different cycle configurations. In the future, models that are more realistic
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are necessary to determine the sizes of different equipment used in the simulations. This

will also be useful for an economic analysis of the cycle.

Another realistic approach will be simulating the cycle with partial load conditions. Cy-

cle performance, as a bottoming cycle, integrated with the topping cycle of a solar system

or a gas turbine system should also be evaluated.

6.2.2 Current Experimental Setup

The integration of realistic heat and cooling sources with the prototype cycle is impor-

tant to show the viability of the cycle with renewable sources. In a lab environment, the use

of an electrical water heater is an easy solution for the simulation of the heat source. With

an electrical controller, the heat source can be varied easily from 60 to 99 °C. In order to

do the experiments under real heating systems, the heat source should be water heated by

flat plate solar collectors. The chiller fluid system must also be more realistic; ambient air

or ground water can be a good candidate for the cooling source of the absorber.

Other upgrades that should be considered for the current setup are as follows:

• The experiments were conducted at the boiler temperature of 85 °C; the heat source

temperature for this boiler temperature was close to 97 °C. The experiments can be

conducted at a higher heat source temperature, such as 120-130 °C. The heat source

temperature can be increased with minor changes in the boiler heating system. The

safety valve at the top of the hot water storage tank opens when the temperature of

the water in the tank reaches to 100 °C. It can be replaced by a pressure safety valve

and higher temperatures can be obtained.
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• The strong solution flow rate was in the range of 0.4-0.8 gpm. In order to increase

the vapor flow rate, the strong solution flow rate should also be increased. For this,

additional electric heaters will be required. The current capacity of the hot water

system is 10.5 kW. The hot water circulation pump also circulates the hot water at

a maximum flowrate of 3 gpm. The hot water flowrate should be increased if the

strong solution flowrate is increased for steady state experiment conditions. This

would require a new pump.

• The chiller capacity is enough when the system works at the boiler and absorber

temperatures of 85 °C and 35 °C. However, the experiments at the absorber tem-

perature of 25 °C were not successful as the temperature of the chiller fluid steadily

increased. The storage tank size for the chiller might be increased, so that the steady

state operation at the absorber temperature of 25 °C can be extended.

• In a usual refrigeration system, 1-3% oil flows with the refrigerant, but it will return

to the compressor with the pressure driven flow. In the current experimental system,

the turbine exit is connected to the absorber, and the oil mixes with the ammonia-

water mixture. Therefore, oil filter might be helpful at the exit of the scroll expander

to minimize the oil amount that mixes with the ammonia-water mixture.

• As the current cycle was constructed with major modifications, there was not enough

information on the vapor flow rate that the system could produce. The vapor produc-

tion from the system was established by the experiments. The current scroll expander

is oversized, as the rotational speed did not exceed 1000 rpm in the experiments.
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Therefore, a smaller size new scroll device could perform better, with the known

conditions such as temperature, pressure, and vapor flow rate, a better selection of

the scroll device would give higher turbine efficiency.

• Power measurements were complicated as they are based on some assumptions. The

vapor sample taken by a syringe was misleading the concentration value due to con-

densation of the vapor in the syringe. Therefore, vapor concentrations were deter-

mined from the property relations using the measured temperature and pressure at

the separator and rectifier exits. As described in Chapter 5, the concentration value

of the vapor is very crucial in the work output and expander efficiency calculations.

Therefore, in the future studies, the GC can be moved close to the expander and a

sample line can be developed between the turbine inlet and the GC, a small diameter

stainless steel tube can be used for this purpose with a couple of valves.

6.2.3 Scale of the Future Demonstration Plant

The scale of the demonstration plant is very important. As discussed in chapter 4, the

scale of the plant directly affects the selection of the expander, and costs of the plant. Clean

Energy Research Center is planning to build a 50-75 kW solar thermal power plant at the

University of South Florida campus. The parabolic troughs will be used to convert the sun

energy to thermal heat and the expected heat source temperature will be around 200-250

°C. This could be a good opportunity to start the scaling of the cycle.

In the power industry, turbine efficiencies of 70% to 80% are achievable when the

system size is at the scale of 100 kW. The size of 50 kW would require scaling up the
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components of the system. The increase in the scaling of the cycle would also require

an automation system. A study to develop a control scheme would be a vital step for the

commercialization of the system.

6.2.4 Economical Aspect

The capital cost of energy per unit can be decreased by utilizing waste heat or low

temperature. Industries such as steel manufacturing, textile, and cement consume high

amount of energy, and their processes produce high temperature waste heat, which could

be converted to power or cooling depending on their needs. In order to attract serious

interest from these industries, an economic analysis should be performed. The economic

costs would depend on the size of the unit and bulk manufacturing. Therefore, initial

economical study can be started for a size of 500 kW to 1 MW; this would be the starting

case for the commercialization of the cycle. This would give the viability of the proposed

cycle in comparison with alternative energy conversion systems.
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Appendix A: Thermodynamic Properties of Ammonia-Water Mixture

For the evaluation of the working fluid properties the method described by Xu and

Goswami [106] is employed. The Gibbs free energy method is used to determine mixture

properties while empirical equations for bubble and dew point temperatures are used to

determine phase equilibrium. Good agreement between this method and experimental data

have been shown [106].

A.1 Pure Component Properties

Beginning with the components needed to determine mixture properties, the Gibbs free

energy for a pure component is given as Equation A.1.

G = h0−T s0 +

T∫
T0

cpdT +

P∫
P0

vdP−T
T∫

T0

cp

T
dT (A.1)

where the subscript 0 indicates reference state properties. The empirical relations used by

Ziegler and Trepp [129] for constant pressure specific heat and specific volume are used

here, Eqs. A.2-A.3 are for liquid phase relations, and Eqs. A.4-A.5 are for gas phase

relations.

vl = A1 +A2P+A3T +A4T 2 (A.2)

cl
p = B1 +B2T +B3T 2 (A.3)

vg =
RT
P

+C1 +
C2

T 3 +
C3

T 11 +
C4P2

T 11 (A.4)

cg
p = D1 +D2T +D3T 2 (A.5)
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Appendix A: (Continued)

Substitution and integration of Equations A.2 and A.3 into Equation A.1 results in the

following expression for the reduced liquid phase Gibbs free energy.

Gl
r = hl

r,0 +Trsl
r,0 +B1(Tr−Tr,0)+

(
B2

2

)
(T 2

r −T 2
r,0)+

(
B3

3

)
(T 3

r −T 3
r,0)

−B1Trln
(

Tr

Tr,0

)
−B2Tr (Tr−Tr,0)−

(
B3Tr

2

)(
T 2

r −T 2
r,0
)

+
(
A1 +A3T +A4T 2)(Pr−Pr,0)+

(
A2

2

)
(P2

r −P2
r,0) (A.6)

Similarly, substitution and integration of Equations A.4 and A.5 into Equation A.1 re-

sults in the following expression for the reduced gas phase Gibbs free energy. Table A.1

presents the coefficient values for Equations A.6 and A.7. The reduced properties are de-

fined in Equations A.8 through A.13. The associated reference values are presented in

Table A.2.

Gg
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(A.7)

Tr =
T
TB

(A.8)

Pr =
P
PB

(A.9)
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Appendix A: (Continued)

Gr =
G

RTB
(A.10)

hr =
h

RTB
(A.11)

sr =
s
R

(A.12)

vr =
vPB

RTB
(A.13)

Table A.1 Coefficients for the Gibbs energy relation

Coefficient Ammonia Water
A1 0.03971423 0.02748796
A2 -1.790557E-05 -1.016665E-05
A3 -0.01308905 -0.004452025
A4 0.003752836 0.000838925

B1 16.34519 12.14557
B2 -6.508119 -1.898065
B3 1.448937 0.2911966

C1 -0.01049377 0.02136131
C2 -8.288224 -31.69291
C3 -664.7257 -46346.11
C4 -3045.352 0.0

D1 3.673647 4.01917
D2 0.09989629 -0.0517555
D3 0.03617622 0.01951939

hl
r,0 4.878573 21.821141

hg
r,0 26.468873 60.965058

sl
r,0 1.644773 5.733498

sg
r,0 8.339026 13.45343

Tr,0 3.2252 5.0705
Pr,0 2.000 3.000
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Appendix A: (Continued)

Table A.2 Reference values for reduced property computation

TB 100 K
PB 10 bar
R 8.314 kJ/(kmol K)

For a pure component, the molar specific properties of enthalpy, entropy, and volume

are related to the reduced Gibbs free energy through Equations A.14 through A.16.

hr =−RTBT 2
r

[
∂

∂Tr

(
Gr

Tr

)]
Pr

(A.14)

sr =−R
[

∂Gr

∂Tr

]
Pr

(A.15)

vr =
RTB

PB

[
∂Gr

∂Pr

]
Tr

(A.16)

A.2 Liquid Mixture Properties

The Gibbs excess energy function for liquid mixtures allows for deviation from ideal

solution behavior. The relation used here is the same one used by Zeigler and Trepp [129]

and is given in Equation A.17. The parameter x in Equation A.17 is the ammonia mole

fraction of the ammonia-water mixture. The coefficients are defined in Equations A.18

through A.20. In turn, the coefficients used in Equations A.18 through A.20 are those

proposed by Ibrahim and Klein [129] and are given in Table A.3. The excess enthalpy,

entropy and volume for liquid mixtures is presented in Equations A.21 through A.23.

GE
r =

[
F1 +F2(2x−1)+F3(2x−1)2](1− x) (A.17)
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Appendix A: (Continued)

Table A.3 Coefficients for the Gibbs excess energy relation

E1 -41.733398 E9 0.387983
E2 0.02414 E10 0.004772
E3 6.702285 E11 -4.648107
E4 -0.011475 E12 0.836376
E5 63.608967 E13 -3.553627
E6 -62.490768 E14 0.000904
E7 1.761064 E15 24.361723
E8 0.008626 E16 -20.736547

F1 = E1 +E2Pr +(E3 +E4Pr)Tr +
E5

Tr
+

E6

T 2
r

(A.18)

F2 = E7 +E8Pr +(E9 +E10Pr)Tr +
E11

Tr
+

E12

T 2
r

(A.19)

F3 = E13 +E14Pr +
E15

Tr
+

E16

T 2
r

(A.20)

hE =−RTBT 2
r

[
∂

∂Tr

(
GE

r
Tr

)]
Pr,x

(A.21)

sE =−R
[

∂GE
r

∂Tr

]
Pr,x

(A.22)

vE =
RTB

PB

[
∂GE

r
∂Pr

]
Tr,x

(A.23)

Finally, the liquid mixture properties can be computed with Equations A.24 through

A.27.

hl
m = xhl

a +(1− x)hl
w +hE (A.24)

sl
m = xsl

a +(1− x)sl
w + sE + smix (A.25)
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Appendix A: (Continued)

smix =−R [xln(x)+(1− x)ln(1− x)] (A.26)

vl
m = xvl

a +(1− x)vl
w + vE (A.27)

where the subscripts m, a, and w, indicate mixture, ammonia, and water properties respec-

tively.

A.3 Vapor Mixture Properties

Vapor mixtures of ammonia and water are treated as ideal solutions. The following

formulations are used to compute the mixture thermodynamic properties.

hg
m = xhg

a +(1− x)hg
w (A.28)

sg
m = xsg

a +(1− x)sg
w + smix (A.29)

vg
m = xvg

a +(1− x)vg
w (A.30)

A.4 Equilibrium Conditions

To determine the phase equilibrium of ammonia-water mixtures, the bubble and dew

point temperatures are computed from the explicit relationships of reference [130]. The

relations themselves and associated definitions are presented as Equations A.31 through

A.34. Note that in Equations A.31 through A.34 the temperatures are in °F and pressures

have units of psia. The coefficient values are presented in Tables A.4-A.6.
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Appendix A: (Continued)

Tbubble = TC−
7

∑
i=1

(
Ci +

10

∑
j=1

Ci jx j

)(
ln
(

Pc

P

))i

(A.31)

Tdew = TC−
6

∑
i=1

(
ai +

4

∑
j=1

Ai j (ln(1.0001− x)) j

)(
ln
(

Pc

P

))i

(A.32)

TC = Tcritical,water−
4

∑
i=1

acritical,ixi (A.33)

PC = Pcritical,waterexp

(
8

∑
i=1

bcritical,ixi

)
(A.34)

Table A.4 Coefficient values for the determination of mixture bubble and dew point tem-
peratures (acritical,i, ai, bcritical,i and Ci)

acritical,i ai bcritical,i Ci
205.88890000 153.17055346 0.36810552 153.63452146
280.93055600 -11.77056875 -3.66795489 -13.03055439
-317.01388890 -1.78126356 46.60004708 -1.14845283
263.19444400 0.64738546 -262.92106200 0.55035809

-0.07199508 732.99536936 -0.07534501
0.00285424 -1076.06134890 0.00481117

797.94807805 -0.00012043
-235.90390422

A.5 Comparison of Thermodynamic Property Calculation Methods

Xu and Goswami [106] model was compared with theoretical model based on Helmholtz

free energy formulation [131] which is used in the National Institute of Standards and

Technology (NIST) Reference Fluid Thermodynamic and Transport Properties Database

(REFPROP) [132]. Figures A.1-A.3 show the comparison of the models for the satura-

tion pressures, enthalpy and entropy of the saturated liquid and vapor of ammonia–water
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Table A.5 Coefficient values for the determination of mixture bubble and dew point tem-
peratures (Ci j)

Ci j
-462.46032137 -9668295.89504000 -3583589.86875000 4807.07241098
23739.99863090 5922081.87086000 12243265.38150000 13565.10033090
-194504.35292000 -1432405.52125000 -22307970.01560000 -466407.78083200
639383.52886700 421.44312221 22896656.84990000 2827083.44764000
-523748.05763600 -14560.35492500 -12483324.80910000 -8469715.15799000
-2328271.47551000 53051.44956330 2813311.71633000 14459588.89620000
7562418.53499000 382763.79358200 -248.78380417 -14281087.53310000

7596403.59678000 2132412.46959000 -3064.82070658 -54497.09733360
-1684002.64482000 -3699199.65914000 71.79547521 3.97454954
126.96558073 3688365.22546000 51780.66665900 -77.02684647
-2090.45270574 -1975122.39296000 -209714.89985600 541.19105807
1993.17101166 440201.44606800 405011.98535500 -1696.60270972
100706.51039600 -33.53434462 -428310.46156600 1713.45942707
-687388.80861200 601.87858669 238153.69832600 4019.01019872

-14844.79280040 113.76206455
19481.00945510 -258.75049692
-12107.07945010 311.00258522
2966.92804386 -123.91799345
-0.17080617 -123.48062749
3.48182859 154.37504211
-27.79575877 -48.50838287

Table A.6 Coefficient values for the determination of mixture bubble and dew point tem-
peratures (Ai j)

Ai j
194.79391346 -4.78866919 -0.90857588 -0.01916646
74.23612419 -0.22541673 -0.35675269 -0.00170143
9.84103820 13.01754474 0.02380673 0.00195442
0.43684385 6.15865641 0.00495594 0.00280533
-74.35082834 0.78974034 -0.00071864 0.00138994
-33.29418798 0.03215108 -0.02510264 0.00011642
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mixtures. The maximum relative difference for the saturated liquid pressure, enthalpy and

entropy is less than 3.5%. The maximum relative difference of saturation pressure, enthalpy

and entropy for the saturated vapor are 9.8%, 0.3% and 1.0%, respectively.
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Figure A.1 Comparison of ammonia water mixture saturation pressures by Xu and
Goswami [106] and Tillner-Roth and Friend [131]

Earlier studies of this work was accomplished by using Chemcad [104]. The Predictive

Soave-Redlich-Kwong (PSRK) equation of state and Latent-heat H model were used in the

software to obtain the thermodynamic properties and phase equilibrium of the ammonia-

water mixture. The equation of state PSRK combines the Universal Quasi Chemical Func-

tional Group Activity Coefficients (UNIFAC) model with the Soave-Redlich-Kwong (SRK)

equation of state. Previous studies have shown that the PSRK is in good agreement with

the experimental phase equilibrium of ammonia-water mixtures [133, 134]. The PSRK

and Latent-heat H model were also compared with theoretical model based on Helmholtz

free energy formulation [131]. Figures A.4-A.6 show the comparison of the PSRK and
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Figure A.2 Comparison of ammonia water mixture saturated liquid and vapor enthalpy by
Xu and Goswami [106] and Tillner-Roth and Friend [131]
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Figure A.3 Comparison of ammonia water mixture saturated liquid and vapor entropy by
Xu and Goswami [106] and Tillner-Roth and Friend [131]

Latent-heat H models with Helmholtz free energy [131] models for the saturation pres-

sures, enthalpy and entropy of the saturated liquid and vapor of ammonia–water mixtures.

The average relative difference of saturation pressure, enthalpy and entropy values between
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the PSRK and Latent-heat H model and the two data sets for saturated liquid are 7.0%, 8.0%

and 8.1%, respectively. The average relative difference for the saturated vapor is less than

3.2%.
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T = 90 oC PSRK [104]
T = 150 oC PSRK [104]
T = 30 oC Tillner-Roth and Friend [131]
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T = 150 oC Tillner-Roth and Friend [131]
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Figure A.4 Comparison of ammonia water mixture saturation pressures by PSRK [104] and
Tillner-Roth and Friend [131]
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Figure A.5 Comparison of ammonia water mixture saturated liquid and vapor enthalpy by
PSRK & Latent-heat H [104] and Tillner-Roth and Friend [131]
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Figure A.6 Comparison of ammonia water mixture saturated liquid and vapor entropy by
PSRK & Latent-heat H [104] and Tillner-Roth and Friend [131]
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The thermodynamic model used to generate the simulated results of this work is de-

scribed here. The thermodynamic model is based on the cycle configuration shown in Fig.

B.1. For a binary mixture, two intensive properties and the concentration of the mixture are

sufficient to establish all the other properties. Some combinations include pressure, tem-

perature and concentration (P,T,x); pressure, specific enthalpy and concentration (P,h,x);

or pressure, specific entropy and concentration (P,s,x).

Formulation begins in the absorber where two inputs are given, the absorber exit tem-

perature (T1 = Tabsorber) and basic solution concentration (x1). Assuming the basic solution

is at or very near saturation, property data is used to determine the system low pressure.

P1 = Pabsorber = Psat,liquid(T1,x1) (B.1)

Boiler pressure (P2 = Pboiler) is another input; an energy balance across the pump yields

Eq. B.2,

h2 =
(h2s−h1)

ηpump
+h1 (B.2)

where h2s is the enthalpy calculated at (P2,s2 = s1, x2 = x1), and ηpump is the pump effi-

ciency. State 2 can be determined using property data at (P2, h2, x2). Pump work is given

in Eq. B.3.

Ẇpump = ṁ1× (h2−h1) (B.3)

The saturated liquid-vapor mixture enters the separator after the boiler heat exchanger,

and the vapor and liquid components are separated by gravity at the separator. In order to

calculate states 5 and 9, three hypothetical states are used; state “5pr” is the vapor leav-
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Figure B.1 Schematic description of the Goswami cycle used for thermodynamic formula-
tions

ing the separator, state “9pr” is the liquid separated from the vapor at the separator, state

“condensed” is the liquid condensate formed at the rectifier. The ammonia concentrations

of state 5 and hypothetical states are given in Eqs. B.4-B.7.
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x5 = xdew(P5,T5) (B.4)

xcondensed = xbubble(P5,T5) (B.5)

x5pr = xdew(P4,T4) (B.6)

x9pr = xbubble(P4,T4) (B.7)

Furthermore, mass flow rates of the state 5 and hypothetical states are given in Eqs.

B.8-B.9, which are found by the mass balance equations at the separator and rectifier.

ṁ5pr

ṁ4
= 1− ṁ9pr

ṁ4
=

x4− x9pr

x5pr − x9pr
(B.8)

ṁ5

ṁ5pr
= 1− ṁcondensed

ṁ5pr
=

x5pr − xcondensed

x5− xcondensed
(B.9)

There is now enough information to specify the weak solution (state 9); it is determined

from the junction (states 9pr and condensed) mass and energy balances. The mass flow rate,

enthalpy and concentration of the state 9 are given in Eqs. B.10-B.12,

ṁ9 = ṁ9pr + ṁcondensed (B.10)

h9 =
h9prṁ9pr +hcondensedṁcondensed

ṁ9
(B.11)

x9 =
x9prṁ9pr + xcondensedṁcondensed

ṁ9
(B.12)
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Temperature and other properties of state 9 can be determined using property data at

(P9, h9, x9). For the recovery heat exchanger exit conditions, an effectiveness value is

assumed, and based on the maximum heat transfer that can occur, the exit states can be

determined. Assuming counter-flow operation, the limiting exit conditions are either that

T3 is raised to T9 or T10 is cooled to T2 so the maximum heat exchange is the minimum of

Eq. B.13.

Q̇max,recovery = mino f ṁ3(h3,max−h2)or ṁ9(h9−h10,min) (B.13)

where h3,max and h10,min are calculated at the temperatures of T9 and T2, respectively. Sub-

sequently, the recovery unit exit states are determined by Eqs. B.14 and B.15.

h3 =
Q̇max,recovery× ε

ṁ3
+h2 (B.14)

h10 = h9−
Q̇max,recovery× ε

ṁ9
(B.15)

The weak solution throttle is assumed to be isenthalpic, Eq. B.16.

h11 = h10 (B.16)

The boiler heat transfer and rectifier cooling load can be determined by the energy

balance across the components, and given in Eqs. B.17-B.18.
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Q̇boiler = ṁ4(h4−h3) (B.17)

Q̇recti f ier = ṁ5h5 + ṁ9h9− ṁ4h4 (B.18)

The vapor entering the superheater is assumed to be saturated, state 5. As with the

rectifier operation, the superheater operation is determined by specifying the exit tempera-

ture. Since pressure and concentration are also known, the other thermodynamic properties

can be determined. This brings computation to the inlet of the expander. An isentropic

expander efficiency is assumed and the exit conditions are found by the Eq. B.19.

h7 = h6−ηturbine (h6−h7s) (B.19)

Turbine work output and the net work are calculated as given in Eqs. B.20-B.21,

Ẇturbine = ṁ5× (h6−h7) (B.20)

Ẇnet = Ẇturbine−Ẇpump (B.21)

Having determined the expander exit enthalpy, there is sufficient information to deter-

mine its exhaust temperature at (Pabsorber,xvapor,h7). Based on this exhaust temperature, the

cooling heat exchanger may not be active if the temperature is not below the limit specified

for cooling production. For the analysis of cooling production, this threshold temperature

was 15 °C. If T7 is higher than this, then the cooling heat exchanger has no effect. If the
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exhaust temperature is below the threshold, vapor is heated to the threshold temperature.

The cooling output from the cycle is calculated as given in Eq. B.22.

Q̇cooling = ṁvapor (h7−h8) (B.22)

Finally, all of the conditions needed to compute the heat rejected in the absorber are

know. From an energy balance of the absorber the rejected heat can be determined from

Equation B.23. This concludes the calculations needed to solve for the conditions in this

configuration of the power-cooling cycle.

Q̇absorber = ṁ11h11 + ṁ8h8− ṁ1h1 (B.23)
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The experimental procedures have been described in Chapter 4, this section provides the

details needed to operate ancillary equipment. This appendix provides the instrumentation

details of the experimental setup. The basic operational principle of each instrument is

followed by its specification, calibration technique, and measurement uncertainty.

C.1 Data Acquisition System

All of the data, aside from the manually recorded measurements, was collected with

a DaqBook 200 acquisition system. For hardware information refer to the equipment list

later in this Appendix, and for hardware configuration please refer to the operating manual

for the DaqBook system. The acquisition software used is called DaqView. In this software

each transducer is assigned a channel which can have its own calibration factors, i.e. for

a linear fit, a slope and intercept. The factors used for this purpose were obtained by

calibrating the transducers. As for data collection, a sampling rate of 25 scans per second

for one second was used. The data was converted from binary-coded to ASCII format and

saved as a text file.

C.2 Gas Chromatograph (GC)

Gas Chromatography is an analytical technique used to qualitatively and quantitatively

identify the volatile substances in a mixture. It works on the principle that selective adsorp-

tion/desorption rate of volatile compounds over an adsorbent separates the volatile mixture

into its individual constituents. The major components of a gas chromatograph include a

carrier gas, an oven, a separation column and a detector. A carrier gas which is usually an

inert gas, such as helium, argon or nitrogen, is used to move the sample through the separa-
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Figure C.1 Photograph of the gas chromatograph device used to calculate ammonia con-
centration

column at different time. The sample thus separates into individual constituents, and the

components are separately analyzed by the detector.

The selection of detectors depends on the type of substance to be analyzed. The wide

range of detectors include the flame ionization detector (FID), thermal conductivity detec-

tor (TCD), electron capture detector (ECD), photoionization detector (PID), flame photo-

metric detector (FPD) and thermionic detector. The signal generated by the detector is later

processed and plotted with respect to time. The components then appear as peaks on a time

dependent chart. The retention time identifies the constituent, whereas, the area under the

peak represents its concentration in the sample. The concentration of the ammonia-water

binary solution was measured by a Gas Chromatograph having thermal conductivity detec-

tor (TCD). Samples of the binary mixture were collected in a syringe through septum ports
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installed in the experimental setup. The syringe was pre-cooled before analyzing a liquid

mixture to prevent the boiling of the liquid sample in the syringe.

C.2.1 Gas Chromatograph Calibration

For the ammonia and water mixture, the ratio of the area under the ammonia peak to

the total area under all of the peaks is given in Eq. 1 as a percentage.

%ANH3 = 100
ANH3

ANH3 +AH2O
(C.1)

The area of each component is proportional to the mass fraction of that species in the

sample, according to Eqs. 2 and 3, and scales with the sample size, a. The constants on the

right hand side of the equations, A, can be found for a unit sample size of pure water and

pure ammonia.

%ANH3 = ANH3 |x=1 x (C.2)

%AH2O = AH2O |x=0 (1− x) (C.3)

Using the above equations as calibration curves is inconvenient, requiring exact mea-

surement of every sample size and two calibration points to determine the constants. Eq. 1

can be written by combining it with Eqs. 2 and 3, and a general calibration curve as Eq. 5

can be obtained,
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%ANH3 = 100
cx

(c−1)x+1
(C.4)

C =
ANH3 |x=1

AH2O |x=0
=

(
1− xc

xc

)(
%ANH3 |x=xc

100−%ANH3 |x=xc

)
(C.5)

The obvious advantage of having an area percentage in the calibration curve rather than

the area itself is to take sample size out of the correlation provided the sample size is within

limits of the column and TCD performance. With the calibration constant found from Eq. 5,

the ammonia mass fraction of any sample can be determined from the NH3 area percentage

given by the GC analysis according to Eq. 4. The constant, C, is evaluated at a single

calibration point, using a known sample of mass fraction xc. A standard ammonia-water

liquid mixture at 29.95% of ammonia mass fraction is used for determining the calibration

constant. A total of 15 measurements were made for the standard sample, and the average

value of C was 0.9794.

C.2.2 GC Procedures

The startup and settings for the GC are as follows.

1. Verify that the HaysepT column for ammonia-water separation is installed.

2. The helium carrier gas supply tank is opened. The regulator valve leading to the

GC is also opened. The regulator should be adjusted to approximately 60 psig. Gas

flow past the thermal conductivity detector (TCD) can be verified by immersing the

exhaust tube from the TCD oven, which is located inside the main oven, into a small

vial of water and observing bubbles leaving the tube.
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3. Power is turned on to the data acquisition PC and the PC-GC interface. With the

computer on, the GC software “PeakSimple” is started and the appropriate control

file is loaded, “ThermodynamicCycle.con”. Set initial zero values for Channel 1 and

Channel 2 from the event section. The temperature ramp file is included in the control

file.

4. The GC itself can now be turned on and the settings verified. The on-board flow

regulator should be set at 200 corresponding to 6.4 mL/min. The TCD attenuator

switch should be set to 1. Using the GC’s digital readout the following temperatures

and pressures should be verified.

5. Carrier 1 pressure should be 50 psig.

6. Head pressure 1 should be approximately 3.3-3.7 psig, pressures significantly differ-

ent from this may require replacement of the injection septum.

7. Oven temperature set point of 80° C.

8. TCD set point of 95° C.

9. The filter bake switch on the GC is switched on.

10. The TCD current switch is switched to the high setting. The GC needs about one to

two hours to warm up, such that the TCD output stabilizes. Samples typically cleared

the detector in less than 25-30 minutes with these conditions, so this was chosen as

the length of the data acquisition cycle. Shutdown of the GC is the reverse of startup.
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C.2.3 Syringe Sampling Techniques

The GC can determine ammonia mass fractions of both liquid and vapor samples that

are inserted into its injection port via syringe. The liquid sample is vaporized while it

passes through the packed column, such that the sample is a vapor as it reaches the TCD

for analysis. Because the liquid sample specific volume is much smaller than that for a

vapor sample, the liquid sample size is correspondingly smaller. Experimentally it has

been determined that a liquid sample size of about 2.5-5 µL is sufficient to detect peaks. If

the sample size is much larger, the ammonia and water peaks may not separate out well.

The temperature of the syringe is important for two reasons. A false sample may be

drawn if the needle tip is above the bubble point in liquid sampling. This unwanted phase

change at the needle tip will influence the composition of the sample being drawn. Sec-

ondly, it is desirable to avoid a liquid-vapor mixture in the sample, as during insertion

not all of the liquid or vapor will be inserted. Since the liquid and vapor will not contain

the same ammonia mass fraction, the sample that is inserted may not correctly reflect the

sample that was drawn. For liquid samples, the syringe should thus be cooled prior to use

to ensure the sample remains cooled below the bubble point during drawing. Note under

normal operation, both liquid sampling ports in the system are at sub-cooled fluid regions.

The syringe should be pumped a few times during drawing, to replace any dead volume

and water that was used for cleaning it with the desired sample. Take care not to allow

the system pressure to force the plunger out of the syringe, or the system will leak through

the syringe. The syringe is then locked, removed from the sampling port, and transported
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to the GC. After complete insertion into the GC, the syringe is unlocked and the contents

injected quickly. The syringe is removed and cleaned with tap water to prevent corrosion,

then cooled for the next use.

C.3 Equipment Specification

This section details the measurement equipment and generator used for this work. For

details regarding the physical makeup of the rest of the experimental setup, which is not

covered in detail here, the reader is referred to the description given in Chapter 5. The

measurement devices are shown in Fig. C.2. The following table lists the specification of

various measurement instruments as provided by the manufacturer. The pertinent descrip-

tive information about the measurement equipment used is detailed in Table C.2.

This section also provides details of the calibration scheme used in the current exper-

imental work. An instrument is usually not individually calibrated by the manufacture,

rather a sample size of instruments are tested to obtain a generalized calibration curve.

The variation among the sample size is overlapped by having a larger uncertainty band to

Table C.1 Gas chromatograph equipment list

Device Manufacturer Specifications
Gas Chromatograph SRI Model 8610
Ammonium Hydroxide Fisher Scientific 29.95% assay
GC Column HayeSep S.S. HayeSep T packed column

3’ x 1/8”, 8600-PKTA
Liquid Sampling Needle Hamilton Hamilton # 80728

(22s/2”/2)L
Liquid Syringe Hamilton 50 µL; removable needle type
Sampling Port Flow Design
Thermal Conductivity Detector SRI 4 gold filaments; 8690-0007T

215



www.manaraa.com

Appendix C: (Continued)

Separator

Rectifier

Absorber

Refrigeration
Heat Exchanger

Recovery
Heat Exchanger

Boiler
Heat Exchanger

P-7

T-1-1

Heat Source

Turbine
Bypass

T-1-2

Coolant Fluid

Chilled Fluid

F

S

P

T

Flow Measurement

Pressure Measurement

Temperature Measurement

Concentration Sampling Port

Coolant Fluid

S

F8

S

F5

Strong Solution 
Flow meter

F2

S

Ammonia Vapor F4

F7

F1

T-1-3

Weak Solution 
Flow meter

T-1-4

T-1-5

T-1-6

T-1-7

T-1-9

T-1-10

T-1-15T-1-11

T-1-13

T-1-14

T-2-1

T-2-2

Condenser Fluid

T-2-4 T-2-3

T-2-5 T-2-6

T-2-13

T-2-12

T-2-7

T-2-9

T-2-10

T-2-11

P-3

P-1

P-6

P-5

P-4

F6

P-2

T-1-12

T-2-14

Turbine

F3 Vapor
Flow meter

Figure C.2 Schematic description of the experimental Goswami cycle
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Table C.2 Detailed descriptions of the instrumentation and measurement equipment used
for this work, major equipment

Device Manuf. Model Specifications
Data Acq. PC
Interface

IoTech DaqBook
200

16-bit analog to digital converter; 100
kHz sampling rate

Data Acq.
Software

IoTech Daq
View

Version 3.14

Current/Voltage
Meas. Card

IoTech DBK 15 16 channels; measures 4 – 20 mA as
well as voltage up to ±30 V

Thermocouple
Meas. Card

IoTech DBK 82 14 channels; accuracy ±0.5 °C

Thermocouple Omega TMQSS T-type; accuracy ±1°C

Figure C.3 Photograph of the data acquisition cards and cable connectors

eliminate the tedious and expensive calibration of individual instruments. Measurement

inaccuracies are further increased by the introduction of external factors, such as instal-
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Table C.3 Detailed descriptions of the instrumentation and measurement equipment used
for this work, pressure transducers

Pressure
Transducers

Manufacturer Part Num-
ber/Model

Specifications

Absorber Cole Parmer Model
68070-02

Range 0 – 50 psig; output 4 –
20 mA; input 24 VDC;
accuracy ±0.13% full scale

Absorber Exit,
2

Cole Parmer Model
68073-04

Range -14.7 – 60 psig; output
4 – 20 mA; input 24 VDC;
accuracy ±0.13% full scale

Vapor Throttle
Exit, 3

Cole Parmer Model
68073-04

Range -14.7 – 60 psig; output
4 – 20 mA; input 24 VDC;
accuracy ±0.4% full scale

Absorber
Vapor Inlet, 4

Cole Parmer Model
07356-13

Cole Parmer (800) 323-4340

Absorber
Weak Inlet, 5

Cole Parmer Model
68073-06

Range -14.7 – 100 psig;
output 4 – 20 mA; input 24
VDC; accuracy ±0.13% full
scale

Separator
Entrance, 6

Setra Model 256 Range 0 – 250 psig; output 4
– 20 mA; input 24 VDC;
accuracy ±0.13% full scale

Turbine Inlet,
7

Setra Model 256 Davis Inotek Instruments
(800) 368-2516

Turbine
Exhaust, 8

Cole Parmer Model
A-68073-04

Cole Parmer (800) 323-4340

Absorber
coolant

Cole Parmer 68071-58 Range 0 – 10 psid; output 4 –
20 mA; input 24 VDC ;
accuracy ±0.25% full scale

lation, noise and environmental effects. Thus, the individual calibration of instruments is

desired to ensure and improve the accuracy of a measurement. An effort was made to test

the instruments for the validity of their measurement accuracy, and incorporate a correction

factor to further improve their precision. Though most of the instruments are calibrated in

the laboratory, the error of instruments as reported by the manufacturer is still used for the
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Figure C.4 Photograph of a pressure transducer

experimental analysis. Numerous unaccountable errors like installation, noise and environ-

mental effects make it infeasible to predict the actual error of the device after calibration.

The purpose of calibration was to improve the precision of instruments, and to ascertain

that the error is within the uncertainty bands as mentioned by the manufacturer.

Rotameter is the most common type of flow meter consisting of a uniformly tapered

flow passage and a float. It is installed vertically along the length of the tapered tube with

larger diameter end at the top. The fluid enters the tapered flow path from the bottom end,

and it causes a resultant pressure differential across the float. The imbalance in vertical
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Figure C.5 Photograph of the voltage and current transducers

forces across the float causes it to rise in the tapered flow passage. The flow passage

being tapered, the rise of the float increases the flow area and thus reduces the differential

pressure. The float rises until a balance between the forces of gravity, buoyancy and upward

differential pressure is achieved. The stable position of the float is indicative of the flow

rate. The range of a rotameter for a given process fluid can be changed by changing the

float density. Thus, they provide an economical, reliable and simple solution to a wide

range of flow measuring requirements.
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Table C.4 Detailed descriptions of the instrumentation and measurement equipment used
for this work, flow meters

Flow meters Manufacturer Part Num-
ber/Model

Specifications

Vapor Hoffer Flow
Controls, Inc

Model
HO3/4X3/4

Turbine flow meter; range
1.25 – 25 m3/hr; accuracy
±1% of reading

Basic Solution Brooks
Instrument

Model 1110 Variable area flow meter;
range 0.11 – 1.11 gpm;
accuracy ±1% full scale;
calibrated at 0.833 sg and
1.08 cP

Weak Solution Brooks Model 1110 Variable area flow meter;
range 0.08 – 0.84 gpm;
accuracy ±1% full scale;
calibrated at 0.88 sg and 1.08
cP

Absorber
coolant

Model A1 Great Plains
Industries, Inc.

Paddlewheel flow meter;
range 0.3 – 3 gpm; accuracy
±1% full scale

Figure C.6 Photograph of the strong and weak solution flow meters
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The weak and strong solution flow rates are measured with variable area flow meters.

The material of the float in both rotameters is SS 316 (density 8016 kg/m3). The weak

and strong solution flow meters were calibrated for fluids having specific gravity of 0.88

and 0.833, respectively. Thus, a correction factor is required to account for the difference

in densities of actual and calibration fluids. The relation between the actual and measured

volumetric flow rates is given by,

Figure C.7 Photograph of the vapor flow meter

V̇actual = V̇measured

[
ρcal

(
ρ f loat−ρactual

)
ρactual

(
ρ f loat−ρcal

)]1/2

(C.6)

Turbine flow meter consists of a rotor having an axis of rotation perpendicular to the

flow stream. The multi-bladed rotor is suspended in the flow path. The fluid flow causes

the spinning of rotor, and its rotational speed is proportional to the flow rate. The rotational
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speed of rotor is measured by mechanical, optical or electrical sensors. Vapor flow rate

in the current experimental study is measured with the help of a turbine flow meter. The

rotational speed of the rotor is sensed by a magnetic pickup coil. The signal is processed

by the turbine transmitter (Model HIT-2A, Hoffer Flow Controls, Inc.), and its output is

a 4-20 mA linearized signal proportional to the volumetric flow rate. The flow meter was

calibrated for ammonia gas by the manufacturer, and the reported uncertainty is ±1% of

the reading. The knowledge of temperature, pressure and concentration of the vapor phase

then yields the mass flow rate from volumetric flow rate.

The specifications of the generator are given in Table C.5. This generator was designed

for wind turbine applications.

Table C.5 Generator specifications
Generator Manufacturer: Shin FU Corporation

Volts: 130 Amps: 10 HP: 2.5
RPM: 4500 Rotation
CCW Duty: Continuous.
Listing : SP99001687

The detailed description of the heating and chiller systems are given in Chapter 4. The

schematic drawing of these systems are given in Figures C.9-C.8.
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Figure C.8 Schematic drawing of the chiller system
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Figure C.9 Schematic drawing of the heat source system
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This Appendix provides the details of the uncertainty analysis used for the experimental

study. The uncertainty analysis of the direct measurements are given first, and then the

uncertainty of the derived measurements are presented later.

D.1 Uncertainty of Direct Measurements

The basic quantities, which define the state of a fluid are temperature, pressure, con-

centration and volumetric flow rate. These basic properties are much easier to measure,

and are directly determined with the help of instruments. Other properties like work out-

put, mass flow rate and turbine efficiency are theoretically related to the basic properties.

Thus, uncertainties of these derived properties are also directly dependent on uncertainties

of instruments used to measure basic properties. The root-sum-square method was used

to combine the uncertainties of systematic and random errors. σsystematic, is the fixed or

constant component of the total error. The accuracy of the measurement device determines

this systematic measurement uncertainty. σrandom, the random component of the total error

is called the repeatability or precision error. The random error is calculated within the 90%

confidence interval and given in Eq. D.1.

σrandom =
σmeasurements×1.64485363√

N
(D.1)

The combined standard uncertainty Uc is given as,

Uc =
√

σ2
systematic +σ2

random (D.2)
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D.2 Uncertainty of Derived Measurements

To determine the accumulated error in derived measurements, those quantities that are

functions of two or more primary measurements, the square root of the sum of the squares

of the individual contributing errors is used. Consider a generalized derived measurement

R as a function of several primary measurements ri which is shown in Eq. D.3. The overall

uncertainty of the derived measurement δR is dependent on the uncertainties of primary

measurements and their individual sensitivity over the derived measurement, it is expressed

in Eq. D.4.

R = f (r1,r2, . . . ,rn) (D.3)

δ
2
R =

(
∂R
∂ r1

)2

δ
2
r1
+

(
∂R
∂ r2

)2

δ
2
r2
+ ...+

(
∂R
∂ rn

)2

δ
2
rn

(D.4)

where δr1, ...,δrn are uncertainties of the direct measurements. Many of the derived quan-

tities depend on the fundamental measurements used with thermodynamic property data

of ammonia-water. Since these relationships cannot be directly differentiated as indicated

in the above equation, a finite difference numerical scheme is used to approximate them.

The formulation for the central-difference approximation, neglecting higher order terms, is

used, and shown in Eq. D.5.

∂R
∂ rn

=
f (r1,r2, . . . ,(rn +drn))− f (r1,r2, . . . ,(rn−drn))

2drn
(D.5)
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The following paragraphs describe the derived measurements used in this work. The

state numbers which will be given in the equations are shown in Fig. B.1. The measure-

ment of the vapor composition by GC was unsuitable with the current configuration of

sampling through a syringe. The vapor phase being at saturation state, it was decided to

estimate its concentration by the application of vapor-liquid equilibrium correlations on the

measured temperature and pressure of vapor stream. Thus, the uncertainty in determining

the vapor concentration is directly related to the uncertainty of temperature and pressure

measurements. The uncertainty of vapor concentrations are given in Eqs. D.6-D.8.

xvapor = f (T,P) (D.6)

xvapor = f (T5,P5) (D.7)

δ
2
xvapor

=

(
∂xvapor

∂T5

)2

δ
2
T5
+

(
∂xvapor

∂P5

)2

δ
2
P5

(D.8)

As mentioned in the Chapter 5, vapor concentration for the SV and SHV cases are

initially calculated by the Eq. D.8. Later, the vapor concentration is also calculated by mass

balance equations at the separator as discussed in the Chapter 5. Mass balance equations

at the separator are given in Eqs. D.9-D.10, by using these equations we can find the vapor

concentration, given in Eq. D.11. The uncertainty of vapor concentration based on the mass

balance equations (δ x̃vapor) are given in Eq. D.13. However, the work output and turbine

efficiency uncertainties of the SV and SHV cases are calculated as the same as RHSV case;

the uncertainty of work output and turbine efficieny are assumed as a function of vapor
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mass flow rate, temperature and pressure, they are independent of the vapor concentration

(x̃vapor), which will be shown later in this appendix.

ṁstrong = ṁvapor + ṁweak (D.9)

ṁstrongxstrong = ṁvaporx̃vapor + ṁweakxweak (D.10)

x̃vapor = xweak +
ṁstrong

ṁvapor
(xstrong− xweak) (D.11)

x̃vapor = f (ṁstrong, ṁvapor,xstrong,xweak) (D.12)

δ
2
x̃vapor

=

(
xstrong− xweak

ṁvapor

)2

δ
2
ṁstrong

+

((
−

ṁstrong

ṁ2
vapor

)
(xstrong− xweak)

)2

δ
2
ṁvapor

+

(
ṁstrong

ṁvapor

)2

δ
2
xstrong

+

(
1+
(
−

ṁstrong

ṁvapor

)2
)

δ
2
xweak

(D.13)

The variable flow meters and the turbine flow meter utilized in the current experimental

investigation measures volumetric flow rate. The weak and strong solution flow rates are

measured through a variable flow meter, whereas the vapor flow rate is determined by a

turbine flow meter. These measurements are converted into the mass flow rate with the

multiplication of density, are given in Eq. D.14.

ṁL,V = rV̇ (D.14)

Thermodynamic properties are used to compute the density of liquid and vapor phases

at the given temperature, pressure and concentration. It should be noted that the concentra-

tion of vapor phase is determined from the temperature and pressure measurements, Eqs.

228



www.manaraa.com

Appendix D: (Continued)

D.15-D.17. Thus, the uncertainty in determining the mass flow rate is directly related to

the uncertainty in volumetric flow, temperature, pressure and concentration measurements.

The mass flow rate uncertainties are given in Eqs. D.18-D.20.

ṁL,strong = r(T,P,x)V̇ = f (T2,P2,xstrong,V̇strong) (D.15)

ṁL,weak = r(T,P,x)V̇ = f (T10,P10,xweak,V̇weak) (D.16)

ṁvapor = r(T,P)V̇ = f (T5,P5,V̇vapor) (D.17)

δ
2
ṁL,strong

=

(
V̇strong

∂r

∂T2

)2

δ
2
T2
+

(
V̇strong

∂r

∂P2

)2

δ
2
P2

+

(
V̇strong

∂r

∂xstrong

)2

δ
2
xstrong

+(r)2
δ

2
V̇strong

(D.18)

δ
2
ṁL,weak

=

(
V̇weak

∂r

∂T10

)2

δ
2
T10

+

(
V̇weak

∂r

∂P10

)2

δ
2
P10

+

(
V̇weak

∂r

∂xweak

)2

δ
2
xweak

+(r)2
δ

2
V̇weak

(D.19)

δ
2
ṁvapor

=

(
V̇vapor

∂r

∂T5

)2

δ
2
T5
+

(
V̇vapor

∂r

∂P5

)2

δ
2
P5
+(r)2

δ
2
V̇vapor

(D.20)

For expander operation in the power-cooling setup, work output per unit time, power (P)

was estimated from the thermodynamic states at turbine inlet and exhaust. The uncertainty

of the power measurements are given in Eqs. D.21-D.25.

P = ṁvapor (hinlet−hexit) (D.21)
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P = ṁvapor (hinlet(T,P)−hexit(T,P)) (D.22)

P = ṁvapor (h6(T6,P6)−h7(T7,P7)) (D.23)

P = f (ṁvapor,T6,P6,T7,P7) (D.24)

δ
2
P = (h6−h7)

2
δ

2
ṁvapor

+

(
ṁvapor

∂h6

∂T6

)2

δ
2
T6
+

(
ṁvapor

∂h6

∂P6

)2

δ
2
P6(

−ṁvapor
∂h7

∂T7

)2

δ
2
T7
+

(
−ṁvapor

∂h7

∂P7

)2

δ
2
P7

(D.25)

Ideal computed power based on measured conditions are given in Eqs. D.26-D.30.

Pideal = ṁvapor
(
hinlet−hexit,(sinlet=sexit)

)
(D.26)

Pideal = ṁvapor
(
hinlet(T,P)−hexit,(sinlet=sexit)(T,P)

)
(D.27)

Pideal = ṁvapor (h6(T6,P6)−h7s(T6,P6,P7)) (D.28)

Pideal = f (ṁvapor,T6,P6,P7) (D.29)

δ
2
Pideal

= (h6−h7s)
2
δ

2
ṁvapor

+

(
ṁvapor

∂ (h6−h7s)

∂T6

)2

δ
2
T6

+

(
ṁvapor

∂ (h6−h7s)

∂P6

)2

δ
2
P6
+

(
−ṁvapor

∂h7s

∂P7

)2

δ
2
P7

(D.30)

Based on the just-described, derived measurement, the expander efficiency is deter-

mined from two power output measurements are given in Eqs. D.31-D.34.
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ηturbine =
P

Pideal
(D.31)

ηturbine = f (P,Pideal) (D.32)

δ
2
ηturbine

=


∂

(
P

Pideal

)
∂P


2

δ
2
P +

∂

(
P

Pideal

)
∂Pideal


2

δ
2
Pideal

 (D.33)

δ
2
ηturbine

=

{(
1

Pideal

)2

δ
2
P +

(
− P

P2
ideal

)2

δ
2
Pideal

}
(D.34)

Generator power output measurement is calculated by the multiplication of voltage and

current measurement, and it is given in Eq. D.35. The uncertainty of the generator power

measurements are given in Eqs. D.36-D.38.

Pe =V × I (D.35)

Pe = f (V, I) (D.36)

δ
2
Pe
=

(
∂Pe

∂V

)2

δ
2
V +

(
∂Pe

∂ I

)2

δ
2
I (D.37)

δ
2
Pe
= (I)2

δ
2
V +(V )2

δ
2
I (D.38)
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